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Hyperbolicity singularities in Rarefaction Waves
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For mixed-type systems of conservation laws, rarefaction waves may contain
states at the boundary of the elliptic region, where two characteristic speeds
coincide, and the Lax family of the wave changes. Such contiguous rarefac-
tion waves form a single fan with a continuous profile. Different pairs of
families may appear in such rarefactions, giving rise to novel Riemann solu-
tion structures. We study the structure of such rarefaction waves near regular
and exceptional points of the elliptic boundary and describe their effect on
Riemann solutions.

KEY WORDS: systems of conservation laws; type change; rarefaction waves;
Riemann solutions; classification of singularities; versal deformation.

1. INTRODUCTION

Rarefaction waves are the simplest scale invariant solutions for sys-
tems of conservation laws. When they involve states where the system is
strictly hyperbolic, i.e., all characteristic speeds are real and distinct, these
waves are usually extremely stable and well behaved [28]. On the other
hand, it is well known that for mixed-type systems of two conservation
laws, one cannot construct rarefaction waves containing states in the ellip-
tic region. A number of models studied recently contain elliptic regions,
see [3–5,11,23,25,27] and the review in [15]. In these models, rarefaction
curves typically contain a point at the boundary of the elliptic region.

In this work, we study rarefaction waves for systems of m conserva-
tion laws in the neighborhood of the elliptic boundary defined as the set
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of states, at which two characteristic speeds coincide. The local structure
of rarefaction waves is described near regular and exceptional states of
the elliptic boundary. Classification of exceptional points according to the
local topological structure of rarefaction curves is given. Explicit formu-
lae providing qualitative and quantitative description of rarefaction curve
singularities are derived. These formulae use eigenvectors and associated
vectors of coincident characteristic speeds as well as the derivatives up
to third order of the flux function at the point of the elliptic boundary.
The importance of the third derivative of the flux function is remarkable
at exceptional states. As a result, the quadratic approximation is insuffi-
cient for local analysis of rarefaction curves near such states. For exam-
ple, three out of six types of singularities at exceptional points are missing
when studying quadratic fluxes [7,17] or quadratic fluxes with small third
order terms [8].

Rarefaction waves containing exceptional states play important role
in Riemann solutions. We show that, for two types of singularities, they
appear in the Riemann solutions for mixed-type problems in a stable way
(both structurally and in the Hadamard sense). There are two types of
such solutions. Solutions of the first type are known: they are related
to the transitional rarefactions for which the family number decreases at
the exceptional state [10,16]. Solutions of the second type are new: they
are related to the rarefactions for which the family number increases at
the exceptional state. In the latter case, the local Riemann solution of
two conservation laws is a single rarefaction wave. This solution does not
change qualitatively under perturbations of the Riemann initial conditions.

For two other singularities, there is an infinite number of Riemann
solutions for the same initial data. Despite the fact that these Riemann
solutions are structurally stable under perturbations of the Riemann ini-
tial conditions, all of them (except for the classical one) are unstable in
the Hadamard sense. Therefore they are physically unimportant.

Our method is based on the versal deformation technique [2,12,13]
that we use for regularizing the fold structure at the elliptic boundary. The
advantage of this method is that both eigenvectors and eigenvalues are
evaluated locally in an explicit way. For different constructions for regu-
larizing the rarefaction wave field we refer to [9,17].

The paper is organized as follows. Section 2 contains general infor-
mation on rarefaction waves. Section 3 describes the versal deformation
method for studying the fold structure of rarefaction curves. Sections 4
and 5 study regular and exceptional points of the elliptic boundary. Sec-
tion 6 is devoted to nonclassical Riemann solutions with singular rare-
faction waves. Section 7 gives a numerical example, and the Conclusion
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summarizes the contribution. The formulae required in the versal deforma-
tion approach are given in the Appendix. A.

2. RAREFACTION WAVES IN CONSERVATION LAWS

Let us consider a system of m conservation laws in one space dimen-
sion x:

∂U

∂t
+ ∂F (U)

∂x
=0, (2.1)

where U(x, t)∈R
m is a vector of conserved quantities, and F ∈R

m is a flux
function dependent smoothly on U . For smooth solutions, an alternative
form of (2.1) is

∂U

∂t
+A(U)

∂U

∂x
=0, A(U)= ∂F

∂U
, (2.2)

where A is the m×m Jacobian matrix of the flux function.
A simple continuous wave solution of (2.2) has the form

U(x, t)= Ũ (λ), λ=x/t. (2.3)

This solution represents a rarefaction wave, where each value of Ũ (λ)

propagates in space x with speed λ. By substituting (2.3) into equation
(2.2), we arrive after elementary manipulations to

A(U)
dU

dλ
=λ

dU

dλ
(2.4)

if the derivative dU/dλ exists, or in general to the eigenvalue problem

A(U)r =λr, dU ‖ r, (2.5)

where λ is a real eigenvalue and r is a real eigenvector (here and below
we drop tildes over U ). The parallel lines relation dU ‖ r means that the
eigenvector r of the matrix A(U) is the tangent vector to the rarefaction
curve U(λ) in state space. In other words, rarefaction curves are intro-
duced locally as integral curves of the line field induced by a real eigen-
vector of the matrix A(U). The rarefaction wave is defined by a segment
of a rarefaction curve under the condition that the corresponding eigen-
value (speed) λ increases from the left to the right side of the wave.

The system of conservation laws (2.2) is physically valid in the hyper-
bolic region of state space U , where all the eigenvalues of A(U) are
real. If, additionally, all the eigenvalues are distinct, the system is called
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strictly hyperbolic. The values of U such that the matrix A(U) has com-
plex eigenvalues form the elliptic region in state space denoted by E . For
generic systems, the boundary between the hyperbolic and elliptic regions
consists of hypersurfaces in state space, which are smooth where two
eigenvalues coincide forming a 2×2 Jordan block [2]. At some points, the
elliptic boundary may have multiple eigenvalues of other types. But these
points form sets of higher codimension, i.e., they appear at singularities
(nonsmooth points) of the elliptic boundary.

The existence of a hypersurface with coinciding eigenvalues does not
guarantee that there is an elliptic region on one of its sides. In fact, mod-
els of Keyfitz–Kranzer–Isaacson–Temple type are physically relevant but
maintain hyperbolicity on both sides of the hypersurface [11]. Of course,
we do not consider such models in this work.

There are m different rarefaction curves passing through each point
in the strict hyperbolicity region, since there are m different eigenvectors
corresponding to the eigenvalues (characteristic speeds) λ1(U) < λ2(U) <

· · · < λm(U) of the matrix A(U). Thus, each eigenvalue λi(U) generates
its own family of rarefaction curves. Clearly, the curves inside one fam-
ily do not intersect and span the whole region of strict hyperbolicity.
Curves of different families intersect transversally at each point U with
distinct eigenvalues. Points of the rarefaction curves, where the eigenvalue
λ attains an extremum (maximum or minimum) along the curve, form
an inflection locus. The rarefaction wave cannot be extended beyond such
states, otherwise the condition of increasing λ would be violated.

3. FOLD STRUCTURE NEAR THE ELLIPTIC BOUNDARY

Let us consider a point U∗ at the boundary of the elliptic region,
where two eigenvalues couple λi(U∗) = λi+1(U∗) forming a Jordan block
(double eigenvalue with a single eigenvector). In the neighborhood of U∗,
the eigenvectors corresponding to λi(U) and λi+1(U) are close to each
other and coincide at U∗. As a result, one expects singular behavior of the
rarefaction waves of the ith and (i + 1)th families near U∗. This behavior
will be the object of our study.

The matrix A0 =A(U∗) has a double eigenvalue λ0 =λi(U∗)=λi+1(U∗)
with a single eigenvector r0 and an associated vector r1 determined by the
Jordan chain equations

A0r0 =λ0r0, A0r1 =λ0r1 + r0. (3.1)

The left eigenvector l0 and associated vector l1 (both l0 and l1 are row
vectors) are given by
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l0A0 =λ0l0, l1A0 =λ0l1 + l0. (3.2)

The vectors r0, r1 and l0, l1 satisfy the relations

l0r0 =0, l0r1 = l1r0 �=0, (3.3)

and the orthonormalization conditions

l0r1 =1, l1r1 =0 (3.4)

determine the unique vectors l0 and l1 for given r0 and r1, see e.g. [24].
The point U∗ belongs to a hypersurface, which is the boundary of the

elliptic region, see Figure 1 (the gray area is the elliptic region E). When
approaching U∗ from the side of the hyperbolic region, the two eigenvalues
λi(U) and λi+1(U) as well as the corresponding eigenvectors approach and
merge to λ0 and r0 at U∗. Hence, the rarefaction curves of the ith and
(i +1)th families are both tangent to r0 at U∗.

Eigenvalues and eigenvectors are known to be nonsmooth functions
of U at points of multiple eigenvalue, see e.g. [24]. In order to regularize
this singularity we consider the real quantities

s = λi +λi+1

2
−λ0, p = (λi+1 −λi)

2

4
. (3.5)

Figure 1. Rarefaction curves for interacting families (i = 2 and i + 1 = 3) near the elliptic
boundary.
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Here s(U) is the average deviation of the interacting eigenvalues λi and
λi+1 from the coupling value λ0, and p(U) is the squared half-difference
between the eigenvalues. Both s(U) and p(U) are smooth functions of U .
This follows from a general result in versal deformation theory for non-
symmetric matrices [2,13], which says that the matrix A(U) satisfies the
relation

A(U)R(U)=R(U)B(U), B(U)=
(

λ0 + s(U) 1

p(U) λ0 + s(U)

)
. (3.6)

Here R(U)= [R0(U),R1(U)] is an m×2 real matrix that depends smoothly
on U , and s(U) and p(U) are smooth real scalar functions such that

R0(U∗)= r0, R1(U∗)= r1, s(U∗)=p(U∗)=0. (3.7)

At U∗, the 2 × 2 matrix B(U∗) is the Jordan block, and equation (3.6)
coincides with (3.1). Derivatives of s(U), p(U), and R(U) at the point U∗
can be found in terms of the eigenvectors, associated vectors and deriva-
tives of the matrix A [12,13]; some of these expressions that are required
below are given in the Appendix A.

From (3.6) or, equivalently, from (3.5) we obtain

λi(U)=λ0 −
√

p(U)+ s(U), λi+1(U)=λ0 +
√

p(U)+ s(U). (3.8)

Using (3.6), it is easy to check that the corresponding eigenvector is

r(U)=R(U)

(
1

±√
p(U)

)
≡R0(U)±

√
p(U)R1(U), (3.9)

where the plus and minus signs correspond to λi+1 and λi , respectively.
The eigenvalues (3.8) are real if p(s)≥0 (hyperbolic region), and complex
conjugate if p(s)<0 (elliptic region).

In the neighborhood of U∗, the hyperbolic region is given by the
condition p(s)≥0. Hence, the equation

n · (U −U∗)=0 (3.10)

with n = ∇p(U∗) gives the tangent hyperplane to the boundary of the
elliptic region, where ∇ =

(
∂

∂U1
, . . . , ∂

∂Um

)
is the gradient operator in state

space U = (U1, . . . ,Um), and the dot denotes the inner product in R
m.

According to (3.10) the vector n is the normal vector to the elliptic bound-
ary at U∗ directed into the hyperbolic region, see Figure 1. Using the for-
mula (A.5) in the Appendix A, we find

n=
(

l0
∂A

∂U1
r0, . . . , l0

∂A

∂Um

r0

)
. (3.11)
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a) b)

Figure 2. Near the elliptic boundary: (a) new coordinate system (ξ, η), (b) lifting state space
into (ξ, η,U) space.

In the case of two conservation laws, U = (U1,U2), the eigenvalues
λ1 and λ2 are represented by two sheets in the (U1,U2, λ) space. These
two sheets are connected along the points with coinciding eigenvalues λ1 =
λ2, see Figure 2(a) (complex eigenvalues in the elliptic region are disre-
garded). Using expressions (3.5), where p(U) and s(U) are smooth func-
tions, one can show that the λ1 and λ2 eigenvalue sheets put together form
a smooth surface in the (U1,U2, λ) space, as follows. We introduce a coor-
dinate system (ξ, η) on this surface

ξ2 =p(U), η= s(U). (3.12)

Clearly, the real variable ξ is defined only in the hyperbolic region
p(U) ≥ 0. The eigenvalues (3.8) and eigenvectors (3.9) in the new coor-
dinate system become

λ=λ0 + ξ +η, r =R(U)

(
1

ξ

)
≡R0(U)+ ξR1(U), (3.13)

where ξ <0 and ξ >0 correspond to the lower (λ1) and upper (λ2) eigen-
value sheets, respectively. The coinciding eigenvalues appear exactly at the
η axis, and they are equal to λ = λ0 + η. In the general case m > 2, the
m-dimensional surfaces corresponding to λi(U) and λi+1(U) in the (U,λ)

space join at the coupling points λi =λi+1. Together they form one smooth
m-dimensional surface, which is parametrized by taking ξ , η, and m − 2
components of the state vector U .

For us it is convenient to work in the (m + 2)-dimensional space
(ξ, η,U), which contains the smooth m-dimensional surface R given by
conditions (3.12). The coordinates in this space provide a smooth param-
etrization of the eigenvalue and eigenvector (3.13). The line field in state
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space U given by the relation dU ‖ r induces the line field in the (ξ, η,U)

space. Using (3.12) and assuming that ξ �=0, we obtain

(dξ,dη,dU)‖
(∇p ·dU

2ξ
, ∇s ·dU, dU

)
. (3.14)

Multiplying the right-hand side of (3.14) by the scalar 2ξ and using the
relation dU ‖ r, we get the equivalent form for the line field as

(dξ,dη,dU)‖ (∇p · r, 2ξ∇s · r, 2ξr). (3.15)

Now we introduce the vector field

⎛
⎜⎝

ξ̇

η̇

U̇

⎞
⎟⎠=

⎛
⎜⎝

∇p · r
2ξ∇s · r

2ξr

⎞
⎟⎠ (3.16)

associated with the line field (3.15), where the dot over a symbol denotes
differentiation with respect to the parametrization variable τ . Notice that
this vector field depends smoothly on ξ and U , and does not depend on
η.

The integral curves of the line field (3.15) coincide with the integral
curves of the vector field (3.16). Projecting these integral curves (which lie
in the surface R given by (3.12)) onto the U space yields the rarefaction
curves. Thus, the main idea of our construction is lifting two “copies” of
hyperbolic parts of state space U in the (ξ, η,U) space so that they glue
forming a smooth surface, see Figure 2(b). The lower and upper parts of
this surface correspond to the ith and (i + 1)th families so that the cor-
responding rarefaction curves become the integral curves for the explicit
smooth vector field (3.16).

4. REGULAR POINTS OF THE ELLIPTIC BOUNDARY

Let U∗ be a point at the boundary of the elliptic region. As p(U∗)=
s(U∗) = 0, the point U∗ lifted into the (ξ, η,U) space becomes (0,0,U∗).
The vector field (3.16) at (0,0,U∗) takes the form (n · r0,0,0).

In this section, we consider the nonsingular case n · r0 �= 0 when the
(lifted) vector field has no singularity. Using expression (3.11) and the rela-
tion A=∇F , we write the regularity condition n · r0 �=0 as

n · r0 = l0d
2F(r0, r0) �=0. (4.1)
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Here d2F(a, b) denotes the second derivative of the flux function at U∗:

d2F(a, b)=
m∑

i,j=1

∂2F

∂Ui∂Uj

∣∣∣
U=U∗

aibj , a, b∈R
m; (4.2)

below we will also use a similar notation for the first and third deriva-
tives dF(a), d3F(a, b, c) taken at U∗. Recall that n is the normal vector
to the elliptic boundary at U∗. Thus, the condition n · r0 �= 0 implies that
the eigenvector r0 is not tangent to the elliptic boundary.

Using expressions (3.7) and (3.13), we expand the right-hand side of
equation (3.16) into Taylor series at (0,0,U∗) retaining terms up to fist
order: ⎛

⎜⎝
ξ̇

η̇

U̇

⎞
⎟⎠=

⎛
⎜⎝

n · r0 + ξn · r1 +h · (U −U∗)
2ξq · r0

2ξr0

⎞
⎟⎠ , (4.3)

where the vectors h and q are defined as

h ·a =d2p(a, r0)+n ·dR0(a),

q ·a =∇s(U∗) ·a = 1
2 l0d

2F(a, r1)+ 1
2 l1d

2F(a, r0), a ∈R
m.

(4.4)

Here we used formula (A.6) in the Appendix A for derivatives of the func-
tion s(U). The first derivatives of R0(U) and second derivatives of p(U) at
U∗ are given by the formulae (A.9) and (A.13). Solving (4.3) yields

ξ = (n · r0) τ +o(τ),

η = η0 + (q · r0)(n · r0) τ 2 +o(τ 2),

U = U0 + r0(n · r0) τ 2 +o(τ 2),

(4.5)

where we assume ξ0 = ξ(0)=0, which can always be achieved by a shift in
the parameter τ . The integral curves (4.5) have orthogonal intersection at
τ =0 with the ξ =0 hyperplane, see Figure 3(a).

There is a single integral curve passing through (0,0,U∗), for which
η0 =0 and U0 =U∗. When projecting into state space U , the lower part of
this integral curve (ξ < 0) becomes a rarefaction curve of the ith family,
while the upper part (ξ > 0) becomes a rarefaction curve of the (i + 1)th
family. Using the expression (3.13) for the speed of the rarefaction wave λ,
we find from (4.5) that

U(λ)=U∗ + (λ−λ0)
2

n · r0
r0 +o(|λ−λ0|2). (4.6)
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a) b)

Figure 3. Rarefaction waves near a regular point of the elliptic boundary for two conserva-
tion laws: (a) in (ξ, η) coordinates, (b) in state space.

When λ<λ0, expression (4.6) provides an approximation for the rarefac-
tion wave of the ith family: as λ tends to λ0, the state U approaches the
elliptic boundary along the eigenvector r0. When λ > λ0, expression (4.6)
describes the rarefaction wave of the (i +1)th family. In this case, the state
U moves away from the elliptic boundary along the eigenvector r0 when λ

increases from λ0. Figure 3(b) describes this behavior for the case m= 2,
when i =1 and i +1=2. Equation (4.6) is to be contrasted with the classi-
cal expression for U on the ith rarefaction wave near the state U0 =U(λ0)

outside the elliptic region, away from the inflection locus

U(λ)=U0 + λ−λ0

∇λ · ri ri +O(|λ−λ0|2). (4.7)

Using expression (3.13) and equations (4.3), we find the derivative of
the speed λ along the integral curve as λ̇= ξ̇ + η̇≈n · r0. This derivative is
nonzero and does not change sign near the point U∗. Hence, there can be
no inflection points (i.e., where λ has an extremum) in the neighborhood
of regular points of the elliptic boundary.

5. EXCEPTIONAL POINTS AT THE ELLIPTIC BOUNDARY

Let us consider a point U∗ at the elliptic boundary and assume that
n · r0 =0, i.e., the eigenvector r0 is tangent to the elliptic boundary violat-
ing the regularity inequality (4.1). We will call such points exceptional. The
set of exceptional points on the elliptic boundary is given by the condition
∇p(U) · r(U) = 0, where ∇p is a normal vector to the boundary in state
space and r is an eigenvector with the double eigenvalue λ0. Using expres-
sion (3.13) and the equality ξ = 0 at the elliptic boundary, we write this
condition in the form ∇p(U) ·R0(U)=0. Linearizing near the exceptional
point U∗, we obtain
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∇p(U) ·R0(U)≈h · (U −U∗)=0, (5.1)

where the vector h evaluated at U∗ is introduced in (4.4); in the derivation
we used the relations n = ∇p(U∗) and R0(U∗) = r0. The linear equation
(5.1) together with the approximation of the elliptic boundary (3.10) pro-
vide the tangent plane to the set of exceptional points. In the generic case,
when the vectors ∇p and h are linearly independent, the set of exceptional
points is a smooth surface of codimension 2 in state space U . In the case
of two conservation laws (U ∈ R

2), exceptional points are isolated points
on the elliptic boundary curve. In the case U ∈R

3, exceptional points form
smooth curves on the elliptic boundary surface.

5.1. Inflection Locus

The inflection locus is given by the points in state space where the
speed λ attains a maximum or a minimum along the rarefaction curve. In
the space (ξ, η,U) this condition becomes

λ̇= ξ̇ + η̇=∇p · r +2ξ∇s · r =0, (5.2)

where expressions (3.13) and (3.16) were used. Equation (5.2) defines a
smooth hypersurface in the (ξ, η,U) space through the point (0,0,U∗)
with tangent plane given by the linearized equation

∇p · r +2ξ∇s · r ≈ (n · r1 +2q · r0)ξ +h · (U −U∗)=0. (5.3)

Therefore, the inflection locus lifted in the (ξ, η,U) space is a smooth
codimension 1 hypersurface. For two conservation laws, it is a smooth
curve in the (ξ, η) plane defined by equation (5.2), where the vector U is
given implicitly by equations (3.12).

Using (3.13), we write equation (5.2) in the form

ξ =−2ξ2∇s ·R1 +∇p ·R0

2∇s ·R0 +∇p ·R1
. (5.4)

Now, by squaring both sides in (5.4) and using the relation ξ2 =p(U) from
(3.12), we find the equation for the inflection locus in state space as

p =
(

2p ∇s ·R1 +∇p ·R0

2∇s ·R0 +∇p ·R1

)2

, (5.5)

where p, s, R0, and R1 are smooth functions of U . At the exceptional
point U =U∗, we have 2p ∇s ·R1 +∇p ·R0 =n · r0 = 0 and 2∇s ·R0 +∇p ·
R1 = 2q · r0 +n · r1. Hence, under the nondegeneracy condition 2q · r0 +n ·
r1 �=0, the inflection locus is a smooth hypersurface in state space defined
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by equation (5.5); its tangent plane at U∗ is given by n · (U − U∗) = 0.
Recall that n is the normal vector to the elliptic boundary. Therefore, the
inflection locus is a smooth codimension 1 hypersurface in state space,
which is tangent to the elliptic boundary at exceptional points. In partic-
ular, it is a smooth curve in the case of two conservation laws.

5.2. Linearization of the Vector Field

One can see that, since n · r0 stands in the denominator of (4.6), the
behavior of the rarefaction waves should change near exceptional points.
Indeed, (0,0,U∗) is an equilibrium of the vector field (3.16). Under the
condition n · r0 =0, the linearized vector field (4.3) near (0,0,U∗) takes the
form

⎛
⎜⎝

ξ̇

η̇

U̇

⎞
⎟⎠=

⎛
⎜⎝

n · r1 0 hT

2q · r0 0 0

2r0 0 0

⎞
⎟⎠

⎛
⎜⎝

ξ

η

U −U∗

⎞
⎟⎠ . (5.6)

The eigenvalues ρ of the (m+2)× (m+2) matrix in the right-hand side of
(5.6) are found from the characteristic equation

ρm
(
ρ2 − (n · r1) ρ −2h · r0

)=0. (5.7)

There is a zero eigenvalue ρ =0 of multiplicity m. The corresponding
eigenspace has dimension m and consists of the eigenvectors

w0 =

⎛
⎜⎝

0

c

r̂

⎞
⎟⎠ , (5.8)

where c ∈R and r̂ is any vector satisfying the orthogonality condition h ·
r̂ =0. The two remaining eigenvalues are

ρ± = 1
2

(
n · r1 ±

√
(n · r1)

2 +8h · r0

)
(5.9)

with the corresponding eigenvectors

w± =

⎛
⎜⎝

ρ±
2q · r0

2r0

⎞
⎟⎠ . (5.10)
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a) b)

c) d)

e) f)

Figure 4. Generic structures of integral curves near exceptional points in the (ξ, η) plane for
the linearized vector field. Arrows show the direction of increasing speed λ; the dashed line is
the inflection locus; η-axis is the fold line.

5.3. Singularities of Integral Curves

Let us study the structure of integral curves in the nondegenerate case
when ρ± �=0, ρ− <ρ+, q ·r0 �=0, and ρ± �=−2q ·r0. Violation of these condi-
tions leads to higher codimension singularities, which are out of the scope
of our paper. We assume that q · r0 >0, which can be achieved by choosing
appropriately the direction of the eigenvector r0.
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Table I. Singularities in Figure 4 (assumptions: q · r0 > 0 and ρ− <ρ+). The fourth column
gives the numbers of exceptional integral curves corresponding to the types (i,+), (i,−),
(i+1,+), (i+1,−) (here i or i+1 is the family number, and + or − determines whether the
characteristic speed increases or decreases away from the singularity).

Case Equilibrium
Additional
conditions

Exceptional
integral curves

Simplest
flux

a Focus 0, 0, 0, 0 Cubic
b Saddle ρ− <−2q · r0 0, 2, 2, 0 Quadratic
c Saddle ρ− >−2q · r0 1, 1, 1, 1 Quadratic

d Node
ρ− >0

(or ρ+ <−2q · r0)
0, ∞, ∞, 0 Quadratic

e Node ρ− <−2q · r0 <ρ+ <0, ∞, 1, 1, ∞ Cubic
f Node −2q · r0 <ρ− <ρ+ <0 ∞, 0, 0, ∞ Cubic

The center manifold of the equilibrium (0,0,U∗) in (ξ, η,U) space
is the set of equilibria (the codimension-2 surface of exceptional points).
According to the reduction principle [1], the local dynamics is topologi-
cally equivalent to the dynamics induced by the linearized field on the sta-
ble and unstable manifolds, together with the nonlinear dynamics on the
center manifold. The latter dynamics is trivial since this center manifold
consists of equilibria. So we conclude that the local dynamics is topolog-
ically equivalent to the vector field given by the linearized system, which
is considered below.

The two eigenvectors w± define a 2-dimensional invariant plane of
the linearized vector field (5.6) at the exceptional point U∗. Invariant
planes with the same integral curve structure are obtained for all nearby
exceptional points by shifting the plane through U∗ in the direction of the
eigenvectors w0. Thus, the (ξ, η) plane coordinates facilitate the study of
the integral curves structure in the invariant plane; the coordinates U are
determined uniquely by (ξ, η) and can be suppressed. Figure 4 shows all
six generic structures of integral curves near the exceptional points, cor-
responding to the cases described in Table I. They are distinguished by
several features. One is the equilibrium type: focus (complex ρ±), saddle
(real ρ±, ρ−ρ+ <0), or node (real ρ±, ρ−ρ+ >0). Another criterion is the
number and the type of the integral curves starting or finishing at the
equilibrium. These curves exist if ρ± are real, and they are tangent to
the eigenvectors w±.

Recall that the lower (ξ <0) and the upper (ξ >0) parts of the (ξ, η)

plane correspond to the ith and (i +1)th characteristic families of rarefac-
tion waves, respectively. Points on the line ξ = 0 for small nonzero η cor-
respond to regular points of the elliptic boundary. In the (ξ, η) plane, the
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integral curves are orthogonal to the η axis at regular boundary points, a
fact that can be shown by taking ξ =0 in (5.6).

Since the speed of the rarefaction wave is λ = λ0 + ξ + η, the direc-
tion along the integral curve where λ increases is easily determined by the
sign of the variation dλ = dξ + dη. Increasing λ is shown by arrows in
Figure 4. We distinguish the kind of exceptional curve near (0,0,U∗)
according to the family and the increasing speed direction. The family
number of the curve near the origin is i for ξ < 0 and i + 1 for ξ > 0.
We denote by “+” the situation when the speed λ increases as we move
along the curve away from the origin; otherwise, we write “−”. The num-
ber of each kind of integral curve is given in Table I for each singularity
type. Near the origin, the (i,+) and (i +1,−) exceptional curves lie in the
gray sectors in Figure 4, which are given by the conditions −1 <ξ/η < 0.
Remark that, in case a, there is an infinite number of spiral integral curves
starting at the equilibrium, but they have neither definite family nor speed
direction near the origin. The inflection locus (5.2) is shown in Figure 4
by dashed lines.

Finally, we remark that in the case ρ−ρ+ > 0 (Re ρ− = Re ρ+), there
is a 2-dimensional smooth invariant manifold through each exceptional
point tangent to the eigenvectors w±: it is the stable or unstable mani-
fold depending on the sign of Re ρ±. These manifolds give locally a folia-
tion of (ξ, η,U) space. If ρ−ρ+ <0 (Re ρ− �=Re ρ+), the smooth invariant
manifold tangent to w± exists in case of two conservation laws: it is
the two-dimensional surface R (see Section 3). For m> 2, there are one-
dimensional stable and unstable manifolds tangent to the vectors w±. The
existence of a smooth two-dimensional invariant manifold is a nontriv-
ial question, since the reduction principle provides only the topological
(homeomorphic) equivalence.

5.4. Two Conservation Laws

For two conservation laws, there are two characteristic speeds λ1 and
λ2, which coincide at the boundary of the elliptic region. Generically, the
elliptic boundary is a smooth curve in state space U ∈R

2. The eigenvector
r0 of the double eigenvalue λ1 =λ2 is tangent to this curve at the excep-
tional points. Let U∗ be an exceptional point. For two dimensions, the
2×2 matrix G introduced in the Appendix A becomes

G=A0 −λ0I + r1l1 = r0l0 + r1l1. (5.11)

In particular, one can easily check by using (3.3) and (3.4) that G−1 =G.
Then, the eigenvalues (5.9) can be determined by means of expressions
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(4.4), (5.11), the condition n · r0 = 0 at U∗, formulae (A.5), (A.6), (A.9),
(A.12) in the Appendix A, and the relation A = ∇F . Elementary manip-
ulations enable these eigenvalues to be expressed as

ρ± = 1
2

(
l0d

2F(r0, r1)±
√

D
)

,

D = (
3l0d

2F(r0, r1)−2l1d
2F(r0, r0)

)2 +8l0d
3F(r0, r0, r0).

(5.12)

One can see that expressions (5.12) require second derivatives of the flux
function F along the eigenvector r0 and associated vector r1, and the third
derivative of F along r0. The third derivative of the flux function is very
important. For example, if d3F(r0, r0, r0)=0, (5.12) yields

ρ± = 1
2

(
l0d

2F(r0, r1)±|3l0d
2F(r0, r1)−2l1d

2F(r0, r0)|
)

. (5.13)

According to (4.4),

2q · r0 = l0d
2F(r0, r1)+ l1d

2F(r0, r0). (5.14)

Let q · r0 > 0, which can always be achieved by choosing the direction of
r0. Then it is straightforward to check that only the cases b, c, and d of
Table I are possible. Therefore, only these three types of singularities may
appear for fluxes F described by quadratic functions of state variables,
see [17]. In the cases a, e, and f, the third derivative d3F(r0, r0, r0) is nec-
essarily nonzero. This result is summarized in the last column of Table I,
listing the lowest degree polynomial flux functions for which each partic-
ular singularity can exist.

5.5. Rarefaction Waves with Exceptional States

First, let us consider the case U ∈ R
2. Then (ξ, η) provide the local

parametrization of state space near the exceptional point U∗. Rarefac-
tion curves of the first and second families are obtained from the inte-
gral curves in (ξ, η) plane by folding it smoothly about the η axis and
projecting, see Figure 2. In this way, the lower part (ξ < 0) gives 1-fam-
ily rarefaction curves, and the upper part (ξ >0) gives 2-family rarefaction
curves. The structures of rarefaction curves in state space for the six singu-
larities of Figure 4 are presented in Figure 5. Here 1-family and 2-family
rarefactions are shown by thin and bold lines respectively, and the arrows
indicate the direction of increasing speed λ. Thin and bold dashed lines
represent the inflection loci for 1- and 2-family rarefactions, where the cor-
responding speed λ reaches an extremum (maximum or minimum can be
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a)

c)

e)

b)

d)

f)

Figure 5. Generic structures of rarefaction curves near exceptional points for two conserva-
tion laws (1-family: thin curves, 2-family: bold curves, dashed inflection curves).

distinguished by means of the arrows). Notice that all the exceptional rar-
efactions (i.e. passing through U∗) as well as the inflection locus are tan-
gent to the elliptic boundary. There can be a finite or an infinite number
of exceptional rarefaction curves. In the latter case, the exceptional rar-
efactions span a region in state space; its boundary is determined by the
integral curves tangent to the eigendirection of the larger |ρ±|.

For general U ∈R
m, exceptional points appear at coinciding character-

istic speeds λi(U∗)=λi+1(U∗) under the singularity condition n ·r0 =0. The
integral curves in the (m+2)-dimensional space (ξ, η,U) form two-dimen-
sional invariant leaves near (0,0,U∗) with the integral curve structure as
described in Section 5.3. When rarefaction curves are reconstructed from
the integral curves, these leaves projected into state space U exhibit a fold
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U3

U2

U1

exceptional
points

i-family

( )i+1  -family

*U

r0

r1

Figure 6. Rarefaction curves near exceptional point of type b for m>2.

singularity along the η axis, see Figure 2. Thus, two invariant two-dimen-
sional surfaces containing rarefaction curves arise near each exceptional
point in state space, see Figure 6. One of the surfaces contains i-family
rarefactions and the other contains (i +1)-family rarefactions. Since there
is no relation between i- and (i + 1)-rarefactions away from the elliptic
boundary, these two invariant surfaces do not coincide in general. These
surfaces coincide at the elliptic boundary, which corresponds to the pro-
jection of the fold from the (ξ, η,U) space.

The eigenvector r given by (3.9) is tangent to the i and (i +1) invari-
ant surfaces (when taking minus and plus signs, respectively). Using (3.7)
in (3.9), we obtain

r(U)= r0 + r1
√

n · (U −U∗)+o(‖U −U∗‖1/2). (5.15)

The vectors r0 and r1 of the two leading terms in (5.15) are tangent to
the invariant surfaces. Hence, the orientation of the i and (i +1) invariant
surfaces near the exceptional point is given by the eigenvector r0 and the
associated vector r1, see Figure 6.

We note that, for two conservation laws, singularities of rarefaction
curves in state space have the structure of generic folded phase portraits
appearing in implicit differential equations, see e.g. [1,6]. But, since our
singularities have at most two nonzero eigenvalues, this analogy does not
hold for three or more conservation laws.

Let us find explicitly the rarefaction curves containing the exceptional
point U∗. These curves exist if ρ± are real (when the equilibrium in the
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Figure 7. In the left and center figures, characteristic curves for rarefaction waves with
exceptional states are compared to the classical case on the right.

lifted space is a node or saddle). Using (5.10) and solving the linear-
ized equations (5.6), we find the integral curves starting (or finishing) at
(ξ, η,U)= (0,0,U∗) as

ξ =ρ±z+o(z), η=2(q · r0) z+o(z), U =U∗ +2r0z+o(z), (5.16)

where z=± expρ±τ ; ρ+ and ρ− correspond to the integral curves tangent
to the eigenvectors w+ and w−, respectively. Since λ=λ0 + ξ +η, we find

U(λ)=U∗ + 2(λ−λ0)

ρ± +2q · r0
r0 +o(λ−λ0), (5.17)

where ρ± + 2q · r0 �= 0 is the pertinent nondegeneracy condition. As
opposed to the regular case (4.6), we see that the derivative of the state
U with respect to λ is nonzero at the exceptional point.

The rarefaction wave solution U(λ), λ = x/t can be constructed for
any pair of rarefaction waves containing the state U∗, the first ending and
the second starting at U∗ with increasing λ. In cases b–f of Figure 5 there
are two or infinite number of choices for each of these waves. We will
denote such sequences of two rarefaction waves by Rj · Rk, where j, k ∈
{i, i + 1} are family numbers. Such a pair of rarefaction waves forms a
single rarefaction wave in physical space. According to (5.17), the profile
U(λ) of the rarefaction wave Rj ·Rk is a continuous function of λ at U∗,
which has left and right derivatives. These derivatives coincide (U(λ) is
differentiable at λ = λ0) if the rarefaction curves Rj and Rk correspond
to the same eigenvalue ρ+ or ρ−. Otherwise, the derivative dU/dλ is dis-
continuous at λ0. Recall that the rarefaction curve Rj (as well as Rk) is
the projection of the integral curve, which is tangent to the eigendirection
w− or w+ corresponding to ρ±, see Figures 4 and 5.

Figure 7 shows the behavior of characteristic curves in (x, t) plane for
the waves R1 ·R2 and R2 ·R1 in two conservation laws compared to the
classical situation; the characteristic curves of two families are given by
the equation dx/dt =λi , i = 1,2, and are shown by thin and bold curves,
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respectively. The conserved quantities U are transported along the straight
black characteristic lines forming a single fan for the two families (the fan
is continuous but not necessarily C1). Similar pictures can be drawn for
the waves R1 ·R1 and R2 ·R2. For more than two conservation laws, inter-
acting i and i + 1 families determine similar fans of characteristics; the
other characteristics pass through these fans.

6. RIEMANN SOLUTIONS NEAR THE ELLIPTIC BOUNDARY

Consider the Riemann problem for the system of conservation laws
(2.1), i.e., finding a weak scale-invariant solution U(x, t)= Ũ (x/t) for the
piecewise constant initial data with a single jump at x =0:

U(x,0)=
{

UL, x <0;
UR, x >0.

(6.1)

In this section, we study the Riemann problem for two conservation laws
with the initial conditions UL and UR taken in the hyperbolic region near
the elliptic boundary. Our main concern is to describe the nature of Rie-
mann solutions, which contain rarefaction waves with states on the ellip-
tic boundary. We describe a number of interesting new phenomena, rather
than give a comprehensive study of Riemann solutions near the elliptic
boundary.

The Riemann solution is a sequence of rarefaction and/or shock
waves separated by constant states. There are two types of rarefaction
waves R1 and R2, corresponding to the first and second characteristic
families. Shock waves are the discontinuities consisting of a left state U− =
limx/t↗s Ũ (x/t) and a right state U+ = limx/t↘s Ũ (x/t) propagating with
shock speed s. The left and right states U± of the shock are related to its
speed s by the Rankine–Hugoniot conditions (see e.g. [26])

F(U+)−F(U−)= s(U+ −U−). (6.2)

Let us describe classical shocks. These are 1-family shocks S1 and 2-family
shocks S2, which are defined by the Lax conditions

S1 : λ1(U+)<s <λ1(U−), s <λ2(U+),

S2 : λ2(U+)<s <λ2(U−), s >λ1(U−),
(6.3)

where λ1(U) < λ2(U) are the characteristic speeds. Given a left state, say
UL, all possible right states that can be reached by a single wave are
described by two curves corresponding to 1- and 2-families as shown
in Figure 8 (rarefactions and shocks are represented by solid and dot-
ted lines, respectively). If UL lies in the region of strict hyperbolicity, the
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Figure 8. Riemann solutions near regular points of the elliptic boundary.

curves for the rarefaction and shock waves of the same family start at UL

in opposite directions with the same tangent, see [26]. If UL belongs to the
elliptic boundary, both rarefaction and shock curves have singularities, see
e.g. [14].

Clearly, the speed λ = x/t should increase from the left to the right
side of the Riemann solution. According to (6.3), if two waves are sep-
arated by a constant state (represented by an arrow), they are R1 → R2,
R1 →S2, S1 →R2, or S1 →S2. These four sequences of two waves are the
only possible (classical) Riemann solutions with all states in the region of
strict hyperbolicity, i.e., away from the elliptic boundary. Figure 8 shows
the state space projection of the Riemann solution having type R1 →R2
with the initial conditions (UL,UR) and middle constant state UM .

In the presence of rarefaction curves that touch the elliptic bound-
ary, new types of Riemann solutions appear. Let us start by considering
a rarefaction wave containing a regular state of the elliptic boundary U∗.
This wave consists of two rarefactions R̃1 and R̃2 (denoted by tildes) con-
nected at U∗, see Figure 8. Since the speed λ changes continuously from
one curve to the other, we obtain a single rarefaction wave R̃1 · R̃2 with-
out a separating constant state between R̃1 and R̃2. In the figure, different
Riemann solutions with the fixed left state UL are shown. One can see that
the second part of the rarefaction curve R̃2 serves as a bifurcation bound-
ary for Riemann solutions. Indeed, if the right initial state UR is above
R̃2, the classical Riemann solution with the initial data (UL,UR) exists.
But the Riemann solution of this type cannot be continuously extended
for the states UR below R̃2. Analogously, given the right initial state UR

lying in R̃2, the rarefaction curve R̃1 serves as a bifurcation boundary for
Riemann solutions with different left initial states UL.

Now let us consider Riemann solutions containing an exceptional
state U∗ at the elliptic boundary. The point U∗ connects two rarefaction
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B)A) C)

Figure 9. Nonclassical Riemann solutions in phase space near exceptional points of the
elliptic boundary: (A) with transitional rarefaction (case c), (B) one-wave solution (case d),
(C) infinite number of unstable solutions (cases e and f ).

waves as R1 ·R1, R1 ·R2, R2 ·R1, or R2 ·R2. Depending on the singular-
ity (see Figure 5), all four possibilities can be realized.

Case a: this case is remarkable: despite the existence of an eigenvec-
tor there are no rarefaction curves through the exceptional point at all, see
Figure 5(a). Moreover, the Hugoniot curve through this point may reduce
to the point itself.

Case b: as in the regular case, the point U∗ may connect only the
rarefactions R1 and R2, see Figure 5(b). These rarefactions determine
bifurcation boundaries for different types of Riemann solutions. Consid-
ering Riemann solution of type R1 · R2 that contain U∗, we see that the
corresponding initial conditions form a set of zero measure in the space
(UL,UR).

Case c: the point U∗ may connect two rarefactions of any types, see
Figure 5(c). The interesting case is the sequence R2 · R1. This composi-
tion is known as a transitional rarefaction [10,16] (the example in [16]
corresponds to case VI of Schaeffer–Shearer classification [21] for planar
quadratic polynomial fluxes). Transitional rarefactions appear in Riemann
solutions between the first and second family waves, e.g. S1 →R2 ·R1 →
R2, see Figure 9(A) (the arrows in the figure indicate increasing speed λ=
x/t). Analyzing the figure, we find the following properties of Riemann
solutions. If, for some initial condition (UL,UR), there is a Riemann solu-
tion containing a transitional rarefaction, then similar Riemann solutions
exist for any initial condition in some neighborhood of (UL,UR). More-
over, such Riemann solutions are unique (at least locally). Therefore, tran-
sitional rarefactions appear in Riemann solutions in a structurally stable
way.

The remaining three cases d, e, and f provide new types of nonclas-
sical Riemann solutions.
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Case d : the point U∗ connects only rarefactions of types R1 and R2.
But, unlike case b, there are infinite numbers of R1 and R2 rarefactions,
see Figure 5(d). Riemann solutions in this case have no extra waves, i.e.,
their structure is R1 · R2, see Figure 9(B). Since there are one-parameter
families of rarefaction curves for both R1 and R2, such Riemann solu-
tions are structurally stable, i.e., they are unique and persist under arbi-
trary small change of the initial data. We remark that the structure of
shock curves S1 and S2 at the points UL and UR does not allow local Rie-
mann solutions containing shock waves, see Figure 9(B).

Cases e and f : these two cases are similar. The point U∗ connects rar-
efactions R2 and R1. Each of them can be chosen from the corresponding
one-parameter family of rarefaction curves, see Figure 5(e, f). There can be
two extra waves at the beginning and at the end of the Riemann solution,
e.g. R1 →R2 ·R1 →R2, see Figure 9(C). At first sight, the situation is sim-
ilar to the transitional wave case c in Figure 9(A). However, there is an
infinite number of possible choices for the middle wave, so that there exist
an infinite number of Riemann solutions (more precisely, a two-parame-
ter family of Riemann solutions) for the same initial conditions (UL,UR).
Moreover, under an arbitrarily small perturbation of the initial Riemann
data, this infinite number of solutions persists. Definitely, this situation is
completely unnatural from the physical point of view.

To resolve this paradox, consider a solution for the system of conser-
vation laws (2.1) with continuous initial conditions that change from UL

to UR in a small space interval −δ ≤x ≤ δ with the states lying inside the
region of strict hyperbolicity. For example,

U(x,0)=

⎧⎪⎨
⎪⎩

UL, x <−δ;
(UR −UL)x/(2δ)+ (UR +UL)/2, −δ ≤x ≤ δ;
UR, x >δ.

(6.4)

At large times t , this solution should asymptotically approach the Riemann
solution with the initial conditions (6.1). Out of the infinite number of
Riemann solutions described above, which would be the limit? The answer
is: none of them. The limit Riemann solution is classical and consists of
two shocks S1 →S2 as shown in Figure 9(C). Our hypothesis is supported
by a number of numerical experiments that we have done for different sys-
tems of two conservation laws with small viscosity. We note that similar
numerical experiments showed stability of Riemann solutions for the cases
in Figure 9(A,B).
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7. EXAMPLE

As an example, consider a system of two conservation laws with the
quadratic flux function

F(U)=
(

U2 +αU2
1 /2+U2

2 /2
10U1U2

)
, U =

(
U1

U2

)
, (7.1)

where α is a real parameter. Evaluating characteristic speeds of the system,
we find the elliptic region E as

40U2(1+U2)+ (α −10)2U2
1 <0, (7.2)

which is an ellipse in state space. Let us consider a point U∗ = 0 at the
elliptic boundary. At this point, the double characteristic speed is λ0 = 0
with the right and left eigenvectors and associated vectors

r0 =
(

1
0

)
, r1 =

(
0
1

)
, l0 =

(
0
1

)
, l1 =

(
1
0

)
, (7.3)

satisfying the normalization conditions (3.4). Using formula (3.11), we find
n= (0, 10). Hence n · r0 = 0, i.e., the eigenvector r0 is tangent to the ellip-
tic boundary and U∗ is the exceptional point. Substituting (7.1), (7.3) into
expressions (5.13) and (5.14), we obtain

ρ± = (10±|30−2α|)/2, 2q · r0 =α +10. (7.4)

Here we assume that α + 10 > 0 (recall that q · r0 > 0 was required for the
classification in Table I). For α + 10 < 0 we take opposite signs for all
the vectors in (7.3). Then 2q · r0 = −(α + 10) > 0 and ρ± = (−10 ± |30 −
2α|)/2. According to the Table I, three types of singularities (b, c, and d in
Figures 4, 5) are possible depending on α:

b : α <0; c : 0<α <10 or 20<α; d : 10<α <20. (7.5)

Consider the particular case when α = 14 (case d). The structure
of exceptional rarefaction curves for this case is shown in Figure 10(a)
(remark that the two lower curves pass through two other exceptional
points that correspond to case c). There is an infinite number of R1 ·R2
rarefaction curves passing through the exceptional point U∗. More pre-
cisely, the R1 ·R2 rarefaction curves form a two-parameter family consist-
ing of a one-parameter family of R1 curves and a one-parameter family of
R2 curves. Thus, single rarefaction wave Riemann solutions are found for
any initial conditions such that UL and UR belong to the regions spanned
by the R1 and R2 exceptional rarefaction curves, respectively.
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a) b)

Figure 10. Singular rarefaction wave R1 ·R2 for two specific conservation laws: (a) in state
space (b) in numerical Riemann solution.

Numerical experiments were carried out using a linearized Crank–
Nicolson scheme for two conservation laws (2.1), (7.1) (with the additional
viscous term 0.01 ∂2U/∂x2). As the initial conditions we took (6.4) with
UL = (−2,1), UR = (2,−0.7), and δ =0.01. Figure 10(b) shows the numer-
ical solution at time t = 0.01. This solution represents a single rarefaction
wave of type R1 · R2. The profile U(λ), λ = x/t of this wave is differen-
tiable at λ0 =0, since both R1 and R2 correspond to the same eigenvalue
ρ− = 4, see (5.17). The functions U1(x, t) and U2(x, t) intersect the x-axis
at the same point, which corresponds to the exceptional state U∗ = 0. By
taking initial conditions U(x,0) different from (6.4), we observed solutions
with the same asymptotic behavior. Thus, the Riemann solution consisting
of a single rarefaction wave passing through the exceptional point is sta-
ble in the Hadamard sense. Similar solutions were obtained for perturbed
initial data (UL,UR) showing structural stability of our one-wave solution.
Numerical analysis of the Hugoniot and rarefaction curves showed that
the resulting Riemann solution is the unique solution for the given initial
data.

We note that if the linear term is removed from (7.1), the elliptic
region shrinks to an umbilic point, and the flux corresponds to case III
of Schaeffer–Shearer classification [21]. The double-family rarefaction wave
solutions persist in this limit, see [20], where analogous solutions passing
through the umbilic point were described.

8. CONCLUSION

In this paper, we studied singularities of rarefaction waves in systems
of conservation laws near the boundary of the elliptic region. Regular and
exceptional points at the elliptic boundary are distinguished, and the local
structure of rarefaction curves is studied in detail. We emphasize that the
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theory provides not only qualitative, but also quantitative results that can
be used for finding the type of singularity and structure of nearby rare-
faction curves. The necessary information includes eigenvectors, associated
vectors, and derivatives up to third order of the flux function evaluated at
the singularity. We note the importance of the third derivatives of the flux
function: using only quadratic local approximations may lead to incorrect
singularity type and rarefaction structure.

Singularities of rarefaction waves at exceptional points are related to
nonclassical Riemann solutions, which are stable both structurally and in
the Hadamard sense. A new type of Riemann solution was detected in this
way.

A surprise, detected for some types of singularities, was the existence
of an infinite number of structurally stable Riemann solutions for the
same initial conditions. This paradox was resolved by numerical simula-
tions, which showed that all these Riemann solutions, except for the clas-
sical one, are unstable in the Hadamard sense.

In spirit, our work is similar to the study [22] of full wave curves
for two conservation laws. In that paper, elliptic regions were ruled out;
here we provide the theory for singularities of rarefaction waves needed to
extend that work. We note that in the generic situation considered in our
paper, the hyperbolic region is not invariant under the flow of the evolu-
tion partial differential equation (2.1), as discussed in [18]. The latter work
also describes models with unbounded elliptic regions with no exceptional
boundary points. However, these aspects fall out of the scope of the cur-
rent work.

Of course, the study of shock waves and their admissibility in the
presence of elliptic regions is also necessary. Surprising phenomena may be
associated with singularities of Hugoniot curves near exceptional points.
Singularities at the elliptic boundaries associated with the coincidence of
three or more characteristic speeds are also of interest [19].

APPENDIX A

Separating the first and second columns in equation (3.6), we obtain

A(U)R0(U) = (λ0 + s(U))R0(U)+p(U)R1(U), (A.1)

A(U)R1(U) = (λ0 + s(U))R1(U)+R0(U). (A.2)

At the eigenvalue coupling point U∗, we have s(U∗) = p(U∗) = 0. Then
equations (A.1) and (A.2) coincide with (3.1), i.e., R0(U∗) = r0 and
R1(U∗) = r1. Taking the derivative of both sides of (A.1) and (A.2) with
respect to state variable at U∗, we get
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(A0 −λ0I )
∂R0

∂Uk

= ∂s

∂Uk

r0 + ∂p

∂Uk

r1 − ∂A

∂Uk

r0, (A.3)

(A0 −λ0I )
∂R1

∂Uk

= ∂R0

∂Uk

+ ∂s

∂Uk

r1 − ∂A

∂Uk

r1. (A.4)

Pre-multiplying equation (A.3) by the left eigenvector l0 and using rela-
tions (3.2)–(3.4), we obtain

∂p

∂Uk

= l0
∂A

∂Uk

r0. (A.5)

Similarly, by taking the sum of equations (A.3) and (A.4) pre-multiplied
by l1 and l0, respectively, we find

∂s

∂Uk

= 1
2

(
l1

∂A

∂Uk

r0 + l0
∂A

∂Uk

r1

)
. (A.6)

Let us introduce the nonsingular matrix

G=A0 −λ0I + r1l1. (A.7)

If, for given b, the singular linear equation (A0 − λ0I )x = b has a solu-
tion, then x =G−1b is the unique solution satisfying the condition l1x =0,
see [24]. Using (3.1)–(3.4), one can easily check the relations

Gr0 = r1, Gr1 = r0, l0G= l1, l1G= l0. (A.8)

Now, having the right-hand sides of equations (A.3) and (A.4), we find
their particular solutions by using the matrix G as

∂R0

∂Uk

= G−1
(

∂s

∂Uk

r0 + ∂p

∂Uk

r1 − ∂A

∂Uk

r0

)
= ∂s

∂Uk

r1 + ∂p

∂Uk

r0 −G−1 ∂A

∂Uk

r0,

(A.9)

∂R1

∂Uk

= G−1
(

∂R0

∂Uk

+ ∂s

∂Uk

r1 − ∂A

∂Uk

r1

)
= ∂s

∂Uk

r0 +G−1
(

∂R0

∂Uk

− ∂A

∂Uk

r1

)
.

(A.10)

We remark that the general solutions are obtained by adding an arbitrary
multiple of the eigenvector r0 to the right-hand sides of (A.9) and (A.10).
According to the versal deformation theory [12,13], any choice for the
solution is correct.

Finally, we find the second derivative d2p(r0, r0) under the condition
n · r0 =0. For this purpose, we take the second derivative along r0 of both
sides of (A.1) and obtain

(A0 −λ0I )d2R0(r0, r0) = r0d
2s(r0, r0)+2(q · r0) dR0(r0)+ r1d

2p(r0, r0)

−2dA(r0) dR0(r0)−d2A(r0, r0) r0. (A.11)
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Pre-multiplying (A.11) by l0 and using (3.2)–(3.4), (A.6), (A.8), (A.9),
yields

d2p(r0, r0)=2(q · r0)
2 −2l0dA(r0)G−1dA(r0) r0 + l0d

2A(r0, r0) r0.

(A.12)

Similarly, if n · r0 =0 we obtain

d2p(a, r0) = 2(q · r0)(q ·a)− l0dA(r0)G−1dA(a) r0 − l0dA(a)G−1dA(r0) r0

+ (n ·a) l1dA(r0)r1 + l0d
2A(a, r0) r0, a ∈R

m. (A.13)
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