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Abstract

The paper presents a new general theory of interaction of eigenvalues of matrix operators depending on
parameters. Both complex and real eigenvalues are considered. Strong and weak interactions are
distinguished, and their geometric interpretation on the complex plane is given. Mechanical examples are
presented and discussed in detail.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Behaviour of eigenvalues with a change of parameters is a problem of general interest for
applied mathematicians and natural scientists. This problem has many important applications in
aerospace, mechanical, civil, and electrical engineering. Behaviour of eigenvalues depending on
parameters is of a special value for vibration and stability problems, see, for example, the books
by Bolotin [1], Panovko and Gubanova [2], Ziegler [3], Huseyin [4], Leipholz [5], Thompson [6],
Thomsen [7], and Paidoussis [8].

The theory of interaction of eigenvalues, presented below, is based on the constructive
perturbation methods, developed mostly by Vishik, Lyusternik, and Lidskii, see Refs. [9–11], and
their extension to the multi-parameter case done by Seyranian [12,13], Mailybaev and Seyranian
[14], and Seyranian and Kirillov [15]. In Refs. [12,13] the notion of strong and weak interactions
of eigenvalues was introduced based on a Jordan form of the system matrix. If there are two
eigenvectors corresponding to a double eigenvalue the interaction is called weak, and if there
exists only one eigenvector with a double eigenvalue the interaction is called strong. It was shown
that the strong interaction in one-parameter systems is characterized by two parabolae of equal
curvature at the intersection point lying in perpendicular planes, while weak interaction occurs in
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the same plane; see Fig. 1. It is remarkable that the speed dl=dp of strong interaction tends to
infinity at the intersection point, while weak interaction is characterized by finite interaction speed.

Some results on interaction of complex eigenvalues in vibrational systems were obtained by
Seyranian [16], and Seyranian and Pedersen [17]. In these two papers the important mechanical
effects like destabilization of a non-conservative system by infinitely small damping and
transference of instability between eigenvalue branches were described and explained. Over-
lapping of frequency curves in circulatory systems was studied in Kirillov and Seyranian [18], and
stability boundaries of Hamiltonian and gyroscopic systems were examined by Mailybaev and
Seyranian [19] and Seyranian and Kliem [20].

In this paper, a general theory of interaction of two eigenvalues of matrix operators on the
complex plane depending on multiple parameters is presented. Both complex and real eigenvalues
are considered. Strong and weak interactions of eigenvalues, when one of the parameters is
changed while increments of others remain constant, are distinguished based on a Jordan form of
the system matrix. It is shown that the strong interaction of eigenvalues on the complex plane is
described by hyperbolae with perpendicular asymptotes, if the double eigenvalue l0 is complex,
and by a parabola and straight line, if l0 is real. Weak interaction of eigenvalues, characterized by
two linearly independent eigenvectors at the point of coincidence, is studied. It is revealed that
weak interaction is described by hyperbolae or a small elliptic bubble appearing from the point of
the double eigenvalue l0 perpendicular to the plane of original interaction in the case of a real l0:
And if l0 is complex the interacting eigenvalues keep or interchange their main directions of
motion on the complex plane before and after the weak interaction. It is emphasized that the
presented theory of interactions gives not only qualitative, but also quantitative results on
behaviour of eigenvalues based only on the information at the initial point in the parameter space.

As mechanical examples, vibrational systems with coincident frequencies and stability of
motion of a rigid panel in airflow are considered and discussed in detail.

2. Strong interaction

Consider an eigenvalue problem

Au ¼ lu; ð1Þ

where A is a real m � m non-symmetric matrix with the elements aij smoothly depending on a
vector of real parameters p ¼ ðp1;y; pnÞ; l is an eigenvalue, and u is a corresponding eigenvector.
The eigenvalues l are determined from the characteristic equation detðA� lIÞ ¼ 0; where I is the
identity matrix.
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Fig. 1. Strong and weak interactions of eigenvalues in one-parameter problem.
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Assume that at p0 ¼ ðp0
1;y; p0

nÞ the matrix A0 ¼ Aðp0Þ possesses a double eigenvalue l0; as a
root of the characteristic equation, with an eigenvector u0 and associated vector u1 satisfying the
Jordan chain equations

A0u0 ¼ l0u0;

A0u1 ¼ l0u1 þ u0: ð2Þ

Eqs. (2) mean that there is only one linearly independent eigenvector u0 corresponding to the
double eigenvalue l0: Along with Eqs. (2), a left eigenvector v0 and associated vector v1 are defined
by the left Jordan chain equations

vT
0A0 ¼ l0v

T
0 ;

vT
1A0 ¼ l0v

T
1 þ vT

0 : ð3Þ

The eigenvectors and associated vectors of problems (2) and (3) are related by the equalities [9]

vT
0 u0 ¼ 0; vT

1 u0 ¼ vT
0 u1a0: ð4Þ

Note that the eigenvectors and associated vectors are not defined uniquely. Upon assuming that
the vectors u0 and u1 are given, the following normalization conditions are introduced,

vT
0 u1 ¼ 1; vT

1 u1 ¼ 0; ð5Þ

uniquely determining the vectors v0 and v1:
The aim of the paper is to study the behaviour of two eigenvalues l; which are coincident and

equal to l0 at p0; with a change of the vector of parameters p in the vicinity of the initial point p0:
For this purpose, a variation p ¼ p0 þ ee is assumed, where e ¼ ðe1;y; enÞ is a vector of variation
with jjejj ¼ 1; and e > 0 is a small parameter. As a result, the matrix A takes the increment

Aðpþ eeÞ ¼ A0 þ eA1 þ e2A2 þ?; ð6Þ

where

A1 ¼
Xn

j¼1

@A

@pj

ej; A2 ¼
1

2

Xn

j;k¼1

@2A

@pj@pk

ejek; ð7Þ

with the derivatives taken at p0: Due to these variations the eigenvalue l0 and the corresponding
eigenvector u0 take increments, which can be given in the form of expansions [9]

l ¼ l0 þ e1=2l1 þ el2 þ e3=2l3 þ?;

u ¼ u0 þ e1=2w1 þ ew2 þ e3=2w3 þ?: ð8Þ

By substituting expressions (6) and (8) into eigenvalue problem (1), a chain of equations for the
unknowns l1; l2;y and w1;w2;y is obtained. Solving these equations yields [9,14]

l1 ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT
0A1u0

q
; l2 ¼ ðvT

0A1u1 þ vT
1A1u0Þ=2: ð9Þ

For the sake of convenience, the following notation is introduced

aj þ ibj ¼ vT
0

@A

@pj

u0;
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cj þ idj ¼
1

2
vT
0

@A

@pj

u1 þ vT
1

@A

@pj

u0

� �
;

Dpj ¼ pj � p0
j ¼ eej; j ¼ 1; 2;y; n; ð10Þ

where aj; bj; cj; dj are real constants, and i is the imaginary unit. Then, using expressions (8)–(10)
gives

l ¼ l07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðaj þ ibjÞDpj

r
þ
Xn

j¼1

ðcj þ idjÞDpj þ oðeÞ: ð11Þ

Eq. (11) describes the increments of two eigenvalues l; when the parameters p1;y; pn are changed
under the assumption that e is small. Due to the condition jjejj ¼ 1 one has

jjDpjj ¼ jjeejj ¼ e51: ð12Þ

Thus, inequality (12) implies that all the increments Dp1;y;Dpn are small for their absolute
values.

From expression (11) it is seen that when only one parameter, say the parameter p1; is changed
while others remain unchanged Dpj ¼ 0; j ¼ 2;y; n; then the speed of interaction dl=dp1 is
infinite at p1 ¼ p0

1: Indeed, following Eq. (11) yields

dl
dp1

¼ 7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ ib1

p1 � p0
1

s
þ Oð1Þ: ð13Þ

Since a1 þ ib1 is a complex number, which is generally non-zero, dl=dp1-N as p1-p0
1:

2.1. Real eigenvalue l0

Consider the case of a real double eigenvalue l0: In this case the eigenvectors u0; v0 and
associated vectors u1; v1 can be chosen real and, hence, the constants bj ¼ dj ¼ 0; j ¼ 1;y; n; in
Eq. (11). Let us fix the increments Dp2;y;Dpn and consider behaviour of the interacting
eigenvalues depending on the increment Dp1: Then, formula (11) can be written in the form

l ¼ l0 þ X þ iY þ oðeÞ; ð14Þ

where

X þ iY ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 Dp1 þ

a
a1

� �s
þ c1 Dp1 þ

a
a1

� �
�

c1a
a1

þ b; ð15Þ

and a and b are small real numbers

a ¼
Xn

j¼2

ajDpj; b ¼
Xn

j¼2

cjDpj: ð16Þ

Real quantities X and Y describe, respectively, the real and imaginary parts of the leading terms
in eigenvalue perturbation (11). If a1ðDp1 þ a=a1Þ > 0; then Eq. (15) yields

X ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 Dp1 þ

a
a1

� �s
þ c1 Dp1 þ

a
a1

� �
�

c1a
a1

þ b; Y ¼ 0: ð17Þ
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If a1ðDp1 þ a=a1Þo0; then separating the real and imaginary parts in Eq. (15) gives

X ¼ c1 Dp1 þ
a
a1

� �
�

c1a
a1

þ b;

Y ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a1 Dp1 þ

a
a1

� �s
: ð18Þ

Eliminating Dp1 þ a=a1 from Eqs. (18) yields the parabola

X þ
c1

a1
Y 2 ¼ b�

ac1

a1
ð19Þ

in the ðX ;Y Þ plane symmetric with respect to the X -axis. Since a and b are small numbers
depending on Dpj; j ¼ 2;y; n; parabola (19) gives trajectories of l on the complex plane with a
change of the parameter p1 while the others remain fixed. Note that the constants a1 and c1

involved in Eq. (19) are taken at the initial point p0 in the parameter space.
First, assume that a1 > 0 and Dp2 ¼ ? ¼ Dpn ¼ 0; which implies a ¼ b ¼ 0: It follows from

Eqs. (17)–(19) that with the increase of Dp1 the eigenvalues come together along parabola (19),
merge to l0 at Dp1 ¼ 0; and then diverge along the real axis in opposite directions. The general
picture of strong interaction is shown in Fig. 2, where x ¼ 0 and the arrows indicate motion of the
eigenvalues, when Dp1 increases. The case a1o0 implies the change of direction of motion for the
eigenvalues.

If Dp2;y;Dpn are non-zero and fixed, then the constants a and b are generally non-zero. This
means the shift of parabola (19) along the real axis by x ¼ b� ac1=a1; see Fig. 2. One can see that
the double eigenvalue does not disappear. It changes to l0 þ xþ oðeÞ and appears at p1 ¼
p0

1 � a=a1 þ oðeÞ:

2.2. Complex eigenvalue l0

Consider a complex eigenvalue l0: In this case the vectors u0; u1; v0; and v1 are complex and,
hence, the constants bj and dj in expression (11) are generally non-zero. Keeping the lowest order
term in Eq. (11) gives

l ¼ l0 þ X þ iY þ oðe1=2Þ; ð20Þ

where

X þ iY ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðaj þ ibjÞDpj

r
: ð21Þ
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Taking the square of Eq. (21) and separating real and imaginary parts, one gets the equations

X 2 � Y 2 ¼
Xn

j¼1

ajDpj;

2XY ¼
Xn

j¼1

bjDpj: ð22Þ

Expressing the increment Dp1 from one of equations (22) and substituting it into the other
equation yields

X 2 �
2a1

b1
XY � Y 2 ¼ g; ð23Þ

where g is a small real constant:

g ¼
Xn

j¼2

aj �
a1bj

b1

� �
Dpj: ð24Þ

In Eq. (23) it is assumed that b1a0; which is the non-degeneracy condition for the complex
eigenvalue l0: Eq. (23) describes trajectories of the eigenvalues l; when only the parameter Dp1 is
changed and the increments Dp2;y;Dpn are fixed.

If all Dpj ¼ 0; j ¼ 2;y; n; or if they are non-zero, but satisfy the equality g ¼ 0; then Eq. (23)
yields two perpendicular lines

X �
a1

b1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

a2
1

b2
1

s !
Y ¼ 0;

X �
a1

b1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

a2
1

b2
1

s !
Y ¼ 0; ð25Þ

which intersect at the origin. Two eigenvalues l ¼ l0 þ X þ iY þ oðe1=2Þ approach along one of
lines (25), merge to l0 at Dp1 ¼ 0; and then diverge along another line (25), perpendicular to the
line of approach; see Fig. 3, where the arrows show motion of l with increasing Dp1: Strong
interaction in the three-dimensional space ðp1;Re l; Im lÞ is shown in Fig. 1 (left) with two
identical parabolae lying in perpendicular planes.
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If ga0; then Eq. (23) defines two hyperbolae in the (X,Y) plane with asymptotes (25). When
Dp1 increases, two eigenvalues come closer, turn, and diverge; see Fig. 3. When g changes the sign,
the quadrants containing hyperbola branches are changed to the adjacent.

Example 1. As an example, stability of vibrations of a rigid panel of infinite span in airflow is
considered. It is assumed that the panel is maintained on two elastic supports with the stiffness
coefficients k1 and k2 per unit span. The panel has two degrees of freedom: a vertical displacement
y and a rotation angle j; see Fig. 4. It is supposed that the aerodynamic lift force L is proportional
to the angle of attack j; the dynamic pressure of airflow, and the width b of the panel

L ¼ cy
rv2

2
bj: ð26Þ

Here, cy is the aerodynamic coefficient, r and v are the density and speed of the flow respectively.
It is assumed that m is the mass of the panel per unit surface. Damping forces are not involved in
the model.

Small vibrations of the panel in airflow are described by the differential equations [2]

.y þ a11y þ a12j ¼ 0;

.jþ a21y þ a22j ¼ 0; ð27Þ

where

a11 ¼
k1 þ k2

mb
; a12 ¼

k1 � k2

2m
� cy

rv2

2m
;

a21 ¼
6ðk1 � k2Þ

mb2
; a22 ¼

3ðk1 þ k2Þ
mb

� 3cy
rv2

2mb
: ð28Þ

It is convenient to introduce the non-dimensional variables

k ¼
k1 � k2

2ðk1 þ k2Þ
; q ¼

cyrv2

2ðk1 þ k2Þ
; *y ¼

y

b
; t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

mb

r
; ð29Þ
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where k is a relative stiffness parameter changing in the interval �1=2pkp1=2; and qX0 is a load
parameter. Using these variables in Eqs. (27) and separating the time ð *y;jÞT ¼ u expðintÞ; one
obtains the eigenvalue problem (1) with

A ¼
1 k � q

12k 3 � 3q

 !
; l ¼ n2: ð30Þ

The stability problem of motion of the panel depending on two parameters p ¼ ðq; kÞ has been
studied in Ref. [15]. The characteristic equation is

l2 þ ð3q � 4Þlþ 12kq � 3q � 12k2 þ 3 ¼ 0: ð31Þ

Motion of the panel is stable if all eigenvalues l are positive and simple. The stability of the panel
can be lost by divergence or by flutter, the boundaries of which are given by l ¼ 0 or double
positive eigenvalues with a single eigenvector respectively. Setting the discriminant of Eq. (31)
equal to zero gives

qf ¼
2

3
ð1 þ 4k � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 2Þ

p
Þ: ð32Þ

This is the boundary between flutter and stability regions; see Fig. 5, where S and F denote the
stability and flutter regions respectively. It follows from Eq. (32) that the flutter region belongs to
the half-plane kX0: The other branch of the solution, with plus before the square root in Eq. (32),
corresponds to the boundary between flutter and divergence regions [15], shown in Fig. 5 by
dashed line.

Consider a point ðk; qf Þ on the flutter boundary (32). At this point, the eigenvalue problem (1)
with Eqs. (30) and (32) is solved and the double eigenvalue l0 ¼ 2 � 3qf =2 with the corresponding
eigenvectors and associated vectors satisfying normalization conditions (5) are found as

u0 ¼

2ðqf � kÞ
3qf � 2

1

0
B@

1
CA; u1 ¼

0

2

2 � 3qf

0
B@

1
CA; v0 ¼

12k

2 � 3qf

2

0
@

1
A;

v1 ¼

24k

3qf � 2

0

0
B@

1
CA:
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Fig. 5. The stability and flutter regions for the panel vibrating in airflow.
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Then, according to Eqs. (10) the quantities become

a1 ¼ �
3

2
ð8k � 3qf þ 2Þ; a2 ¼ 12ð2k � qf Þ; c1 ¼ �

3

2
; c2 ¼ 0;

b1 ¼ b2 ¼ 0; d1 ¼ d2 ¼ 0; ð33Þ

and the approximate formula (11) for the eigenvalues takes the form

l ¼
4 � 3qf

2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3

2
ð8k � 3qf þ 2ÞDq þ 12ð2k � qf ÞDk

r
�

3

2
Dq: ð34Þ

This formula coincides with that of obtained from characteristic equation (31) with first order
Taylor expansion of the terms under and out of the square root. The equation of parabola (19)
becomes

Y 2 þ ð8k � 3qf þ 2ÞX ¼ 12ðqf � 2kÞDk: ð35Þ

Due to expressions (32) and (33) the term a1 is negative for 0pkp1=2: This means that for Dk ¼ 0
with the increase of q in the vicinity of the flutter boundary two positive eigenvalues l approach
each other, merge to l0 ¼ 2 � 3qf =2; become complex conjugate (flutter) and diverge along
parabola (35). If Dka0 is small and fixed, then there is a shift of the double eigenvalue by
x ¼ �a2c1Dk=a1 ¼ 12ðqf � 2kÞDk=ð8k � 3qf þ 2Þ and a shift of the parameter q at which the
eigenvalue becomes double (flutter boundary)

qf ðk þ DkÞEqf ðkÞ � a2Dk=a1 ¼ qf ðkÞ þ
8ð2k � qf Þ

8k � 3qf þ 2
Dk: ð36Þ

Note that these shifts are negative or positive depending on the sign of 2k � qf ; which is negative
for 0pko2=

ffiffiffi
3

p
� 1 and positive for 2=

ffiffiffi
3

p
� 1okp1=2: At k ¼ 2=

ffiffiffi
3

p
� 1 the function qf ðkÞ

takes the minimum; see Fig. 5.

3. Weak interaction

Consider a double eigenvalue l0 of the matrix A0 with two linearly independent eigenvectors.
Such an eigenvalue is called semi-simple. Two right eigenvectors u1; u2 and two left eigenvectors
v1; v2 are determined by the equations

A0ui ¼ l0ui; vT
i A0 ¼ l0v

T
i ; i ¼ 1; 2;

vT
i uj ¼ dij ; i; j ¼ 1; 2; ð37Þ

where dij is the Kronecker delta. The last equation represents the normalization condition
determining left eigenvectors uniquely for given right eigenvectors. Note that any linear
combination of right (or left) eigenvectors is a right (or left) eigenvector.

Consider a perturbation of the parameter vector p ¼ p0 þ Dp; where Dp ¼ ee with a direction e

in the parameter space ðjjejj ¼ 1Þ and a small positive perturbation parameter e: Then, the
eigenvalue l0 and corresponding eigenvector u0 take increments, which can be given in the form of
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expansions [9,13]

l ¼ l0 þ el1 þ e2l2 þ?;

u ¼ u0 þ ew1 þ e2w2 þ?: ð38Þ

By substituting expressions (6) and (38) into eigenvalue problem (1), a chain of equations for the
unknowns l1; l2;y and u0;w1;w2;y is obtained. Solution of these equations yields the vector

u0 ¼ g1u1 þ g2u2; ð39Þ

where g1 and g2 are unknown coefficients determined by (see [13])

vT
1A1u1 vT

1A1u2

vT
2A1u1 vT

2A1u2

 !
g1

g2

 !
¼ l1

g1

g2

 !
: ð40Þ

A non-trivial solution g1; g2 of this equation exists if and only if l1 is an eigenvalue of the 2 � 2
matrix on the left side. Two eigenvalues l1 of this matrix and corresponding eigenvectors ðg1; g2Þ

T

determine leading terms in the expansions for two eigenvalues l and corresponding eigenvectors u
(38), which appear due to bifurcation of the double semi-simple eigenvalue l0:

Introducing the notation

X þ iY ¼ el1; ð41Þ

where X and Y are, respectively, real and imaginary parts of the term el1; expansion for
eigenvalue (38) can be written in the form

l ¼ l0 þ X þ iY þ oðeÞ: ð42Þ

According to relations (7) and (40), X þ iY is an eigenvalue of the 2 � 2 matrix

Xn

j¼1

f 11
j f 12

j

f 21
j f 22

j

 !
Dpj; ð43Þ

where

f kl
j ¼ vT

k

@A

@pj

ul ; ð44Þ

with the derivatives evaluated at p0: Solving the characteristic equation for matrix (43) gives

X þ iY ¼
Xn

j¼1

gjDpj7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j;k¼1
hjkDpjDpk

r
; ð45Þ

where

gj ¼ ðf 11
j þ f 22

j Þ=2; hjk ¼ ðf 11
j � f 22

j Þðf 11
k � f 22

k Þ=4 þ ðf 12
j f 21

k þ f 21
j f 12

k Þ=2: ð46Þ

Note that hjk ¼ hkj for any j and k: Expression (45) determines approximation of eigenvalues (42),
when the parameter vector Dp is changing under the assumption that it is small for the absolute
value. The coefficients gj and hjk in this expression depend on the left and right eigenvectors,
corresponding to the eigenvalue l0; and first derivatives of the matrix A with respect to parameters
taken at p0:
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3.1. Real eigenvalue l0

Consider a real semi-simple eigenvalue l0: In this case the eigenvectors u1; u2; v1; v2 can be
chosen real and, hence, the coefficients f kl

j ; gj; and hjk in expressions (44) and (46) are real. By
expressing the square root from equality (45) and taking the square of the obtained relation, two
equations for real and imaginary parts are found as follows:

X �
Xn

j¼1

gjDpj

 !2

�Y 2 ¼
Xn

j;k¼1

hjkDpjDpk;

2 X �
Xn

j¼1

gjDpj

 !
Y ¼ 0: ð47Þ

The second equation requires that X ¼
Pn

j¼1 gjDpj or Y ¼ 0: Therefore, two independent systems
are obtained:

X �
Xn

j¼1

gjDpj

 !2

¼
Xn

j;k¼1

hjkDpjDpk; Y ¼ 0; ð48Þ

and

Y 2 ¼ �
Xn

j;k¼1

hjkDpjDpk; X ¼
Xn

j¼1

gjDpj: ð49Þ

Consider now the behaviour of eigenvalues depending on the parameter p1; when other
parameters p2;y; pn are fixed. First, let us put the increments Dp2 ¼ ? ¼ Dpn ¼ 0: Then,
Eqs. (48) and (49) take the form

ðX � g1Dp1Þ
2 ¼ h11Dp2

1; Y ¼ 0; ð50Þ

Y 2 ¼ �h11Dp2
1; X ¼ g1Dp1: ð51Þ

Upon assuming that h11a0 (the non-degenerate case), only one of systems (50) and (51) has non-
zero solutions. If h11 > 0; then system (51) has only the zero solution X ¼ Y ¼ Dp1 ¼ 0; and
system (50) yields

X ¼ g1Dp17
ffiffiffiffiffiffi
h11

p
Dp1; Y ¼ 0: ð52Þ

Expression (52) describe two real eigenvalues (42), which cross each other at the point l0 on the
complex plane as Dp1 changes from negative to positive values; see Fig. 6 ðr0Þ; where the arrows
show motion of the eigenvalues with an increment of Dp1: If h11o0; then system (50) has only the
zero solution, and system (51) yields

X ¼ g1Dp1; Y ¼ 7
ffiffiffiffiffiffiffiffiffiffi
�h11

p
Dp1: ð53Þ

These formulae describe two complex conjugate eigenvalues crossing at the point l0 on the real
axis with a change of Dp1; see Fig. 6 ðr00Þ:
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From expressions (52) and (53) one can see that the weak interaction occurs at the same plane
in the three-dimensional space ðp1;Re l; Im lÞ; and the speed of interaction dl=dp1 remains finite,
Fig. 1 (right).

Now, consider the case, when the increments Dp2;y;Dpn are small and fixed. Then, upon using
the notation Xn

j¼1

gjDpj ¼ g1Dp1 þ s;
Xn

j;k¼1

hjkDpjDpk ¼ h11ðDp1 � dÞ2 þ c; ð54Þ

where s; d; and c are small real constants depending on Dp2;y;Dpn;

s ¼
Xn

j¼2

gjDpj; d ¼ �
Xn

j¼2

h1j

h11
Dpj; c ¼

Xn

j;k¼2

hjkDpjDpk � h11d
2; ð55Þ

Eqs. (48) and (49) take the form

ðX � s� g1Dp1Þ
2 � h11ðDp1 � dÞ2 ¼ c; Y ¼ 0; ð56Þ

Y 2 þ h11ðDp1 � dÞ2 ¼ �c; X ¼ sþ g1Dp1: ð57Þ

Solutions of systems (56) and (57) depend qualitatively on the signs of the constants h11 and c:
Under the non-degeneracy conditions h11a0 and ca0 there are four possibilities.

Case r0þ ðh11 > 0; c > 0Þ: System (56) determines two hyperbolae in the ðDp1;X Þ plane; system
(57) has no solutions; see Fig. 7. Two simple real eigenvalues approach, and then diverge as Dp1 is
changed; a double eigenvalue does not appear; see Fig. 8.

Case r0� ðh11 > 0; co0Þ: System (56) determines two hyperbolae in the ðDp1;X Þ plane; system
(57) defines an ellipse in the ðDp1;Y Þ plane; see Fig. 7. The hyperbolae and ellipse have two
common points

Dp71 ¼ d7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c=h11

p
; X7 ¼ sþ g1Dp7

1 ; Y7 ¼ 0: ð58Þ

With increasing Dp1 two simple real eigenvalues approach, interact strongly at Dp�1 ¼
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c=h11

p
; become complex conjugate, interact strongly again at Dpþ

1 ¼ dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c=h11

p
; and

then diverge along the real axis; see Fig. 8. By eliminating Dp1 from Eq. (57), an ellipse on the
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complex plane is obtained as

Y 2 þ h11
X � s� g1d

g1

� �2

¼ �c; ð59Þ

see Fig. 8.
If the eigenvalues are plotted in the ðp1;Re l; Im lÞ space, one observes a small elliptic bubble

appearing from the point ðp0
1; l0; 0Þ; see Fig. 9. This bubble is placed in the plane perpendicular to

the plane of original interaction.
At points (58) the double real eigenvalues

l7 ¼ l0 þ X7 þ oðeÞ; ð60Þ
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appear. It is easy to show that each of these eigenvalues has a single eigenvector. Indeed, if
eigenvalues (60) were semi-simple, then X7 have to be semi-simple eigenvalues of 2 � 2 matrix
(43) at Dp1 ¼ Dp71 : Hence, matrix (43) becomes

X7 þ f 11
1 ðDp1 � Dp71 Þ f 12

1 ðDp1 � Dp7
1 Þ

f 21
1 ðDp1 � Dp7

1 Þ X7 þ f 22
1 ðDp1 � Dp7

1 Þ

 !
: ð61Þ

Using this matrix with expressions (46) and (54), gives

h11ðDp1 � dÞ2 þ c ¼
Xn

j;k¼1

hijDpjDpk

¼ððf 11
1 � f 22

1 Þ2=4 þ f 12
1 f 21

1 ÞðDp1 � Dp71 Þ2 ¼ h11ðDp1 � Dp7
1 Þ2 ð62Þ

and, hence, c ¼ 0: But this is a contradiction to the assumption that co0: Therefore, two
interactions at points (58) are strong and follow the scenarios described in the previous section.

Case r00þ ðh11o0; c > 0Þ: System (56) determines an ellipse in the ðDp1;X Þ plane; system (57)
defines two hyperbolae in the ðDp1;Y Þ plane; see Fig. 7. The hyperbolae and ellipse have two
common points (58), where double real eigenvalues (60) appear and cause strong interactions of
eigenvalues. Therefore, with a monotonous change of Dp1 two complex conjugate eigenvalues
approach, interact strongly at Dp1� ¼ d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c=h11

p
; become real, interact again at Dp1þ ¼

dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c=h11

p
; then become complex conjugate and diverge; see Fig. 8. For this case Eq. (59) gives

hyperbolae on the complex plane. The behaviour of eigenvalues in the three-dimensional space
ðp1;Re l; Im lÞ is shown in Fig. 9, where one can see a small elliptic bubble appearing in the plane
Im l ¼ 0 perpendicular to the plane of original interaction.

Case r00� ðh11o0; co0Þ: System (56) has no solutions; system (57) determines two hyperbolae
in the ðDp1;Y Þ plane symmetric with respect to the Dp1 axis; see Fig. 7. Two complex conjugate
eigenvalues approach, and then diverge with an increment of Dp1; a double eigenvalue does not
appear; see Fig. 8. Note that hyperbolae (59) change the vertical angles, where they appear,
compared to the case r00þ:

Variations of the parameters Dp2;y;Dpn change a picture of weak interaction in two ways:
either the double semi-simple real eigenvalue disappear and simple eigenvalues move along
hyperbolae as Dp1 changes, or the double semi-simple eigenvalue splits in two double eigenvalues
with single eigenvectors, which leads to a couple of successive strong interactions with the
appearance of a small bubble in the ðp1;Re l; Im lÞ space.
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3.2. Complex eigenvalue l0

Finally, consider the case when a double semi-simple eigenvalue l0 is complex. In this case the
eigenvalues u1; u2; v1; v2 and, hence, the coefficients f kl

j ; gj; and hjk are complex. If Dp2 ¼ ? ¼
Dpn ¼ 0; then expression (45) yields

X þ iY ¼ ðg17
ffiffiffiffiffiffi
h11

p
ÞDp1; ð63Þ

where g1 and h11 are complex numbers. With a change of Dp1 two eigenvalues (42) cross each
other at the point l0 on the complex plane; see Fig. 6 ðcÞ:

Upon assuming that the increments Dp2;y;Dpn are small and fixed, Eq. (45) yields

X þ iY ¼ sþ g1Dp17
ffiffiffiffiffiffi
h11

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDp1 � dÞ2 þ c=h11

q
; ð64Þ

where s; d; and c are small complex numbers defined by expressions (55). Upon assuming that the
second term under the square root in Eq. (64) is much smaller than the first term, the following
formula can be deduced:

X þ iYEsþ g1dþ g1ðDp1 � dÞ7
ffiffiffiffiffiffi
h11

p
ðDp1 � dÞ þ

c
2h11ðDp1 � dÞ

� �
¼ sþ g1dþ ðg17

ffiffiffiffiffiffi
h11

p
ÞðDp1 � dÞ þ oðDp1 � dÞ ð65Þ

showing that the main directions of eigenvalues on the complex plane before and after the weak
interaction remain the same as for unperturbed case (63).

The expression under the square root in Eq. (64)

z ¼ ðDp1 � dÞ2 þ c=h11; ð66Þ

defines a parabola in the complex plane with a change of Dp1; see Fig. 10 (in the case Im d ¼ 0 the
parabola degenerates to a ray). Computing points z1 and z2 of the parabola belonging to the
imaginary axis, which is perpendicular to the axis of the parabola, results in

Z ¼ z1z2 ¼ 4ðIm dÞ4 � 4ðIm dÞ2 Re
c

h11
� Im

c
h11

� �2

AR: ð67Þ

Assume that Za0; which is a non-degenerate case. This means that za0 for all Dp1 and, hence,
two values of X þ iY given by expression (64) are different. As a result, eigenvalues (42) are
different and the double eigenvalue disappears.
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If Z > 0; then two purely imaginary points z1 and z2 lie at different sides of the origin, i.e., the
origin belongs to the interior of the parabola. In this case z makes a turn around the origin as Dp1

changes. This means that eigenvalues (42) approach, and then diverge without a change of
direction as shown in Fig. 11 ðcþÞ: If Zo0; then the origin lies outside the parabola (this condition
remains valid, when the parabola does not intersect the imaginary axis). As a result, eigenvalues
(42) approach, and then diverge with a change of direction as shown in Fig. 11 ðc�Þ:

Variations of the parameters Dp2;y;Dpn destroy a double semi-simple complex eigenvalue. A
picture of weak interaction can change in two ways: either eigenvalues follow the same directions
after passing the neighbourhood of l0; or the eigenvalues interchange their directions. Behaviour
of the eigenvalues in the neighbourhood of l0 can be rather complicated due to the square root of
complex expression in formula (64).

Example 2. Consider a linear conservative system

M .xþ Cx ¼ 0; ð68Þ

where xARm is a vector of generalized coordinates; M and C are symmetric positive definite real
matrices of size m � m smoothly depending on a vector of two real parameters p ¼ ðp1; p2Þ: Taking
a solution of this system in the form x ¼ u expðiotÞ; the following eigenvalue problem is obtained,

Cu ¼ o2Mu; ð69Þ

where oAR is a frequency and u is a mode of vibrations. Upon denoting

A ¼ M�1C; l ¼ o2; ð70Þ

Eq. (69) can be written in standard form (1).
Consider now a point p0 in the parameter space, where the matrix A0 ¼ M�1

0 C0 has a double
eigenvalue l0 ¼ o2

0: Since the matrices M0 and C0 are symmetric, the multiple eigenvalue l0 is
always semi-simple. Let u1 and u2 be right eigenvectors (modes) corresponding to the eigenvalue
l0: It can be shown that left eigenvectors are

v1 ¼ M0u1; v2 ¼ M0u2: ð71Þ

Normalization conditions (37) take the form

uT
1M0u1 ¼ uT

2M0u2 ¼ 1; uT
1M0u2 ¼ uT

2M0u1 ¼ 0: ð72Þ

Using expressions (70) and (71) in formula (44) gives

f kl
j ¼ uT

k

@C

@pj

� o2
0

@M

@pj

� �
ul ; ð73Þ
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where f 12
j ¼ f 21

j due to the symmetry of the matrices M and C: With the use of relations (46), one
obtains

g1 ¼ ðf 11
1 þ f 22

1 Þ=2; h11 ¼ ðf 11
1 � f 22

1 Þ2=4 þ ðf 12
1 Þ2X0: ð74Þ

Upon assuming that h11a0; the bifurcation of the double eigenvalue l0 is given by expression (52)
for the case Dp2 ¼ 0: This bifurcation is of the type r0; see Fig. 6, where l0 splits into two real
eigenvalues for small increments Dp1: This agrees with the general theory, which says that all
frequencies of the conservative system under consideration are real. If Dp2 is non-zero and small,
then expression (55) gives

s ¼ ðf 11
2 þ f 22

2 ÞDp2=2;

d ¼ �ððf 11
1 � f 22

1 Þðf 11
2 � f 22

2 Þ=4 þ f 12
1 f 12

2 ÞDp2=h11;

c ¼ ððf 11
1 � f 22

1 Þf 12
2 � ðf 11

2 � f 22
2 Þf 12

1 Þ2ðDp2Þ
2=ð4h11ÞX0: ð75Þ

Hence, behaviour of the eigenvalues with a change of Dp1 is described by two hyperbolae (56); see
Figs. 7 and 8 ðr0þÞ: Two real eigenvalues approach, turn at some distance from each other, and
diverge with a monotonic change of Dp1: The frequencies

o ¼
ffiffiffi
l

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ X þ iY þ oðeÞ
q

¼ o0 þ
X þ iY

2o0
þ oðeÞ; ð76Þ

have the same type of behaviour in the neighbourhood of o0: A small perturbation of the second
parameter Dp2 destroys a picture of weak interaction in such a way that the double frequency
disappears. This agrees with the results of singularity theory [21].

4. Conclusion

A new theory of interaction of eigenvalues in multi-parameter problems has been presented.
This theory describes behaviour of eigenvalues with a change of parameters based on the
information at the initial point, where the eigenvalues coincide. This information includes
determination of the eigenvectors and associated vectors and first order derivatives of the system
matrix with respect to parameters. The presented theory of interaction of eigenvalues in multi-
parameter problems has a very broad field of applications because any physical system contains
parameters. The study of behaviour of eigenvalues in vibrational systems is especially important
for dynamic stability problems, since even a small change of parameters can lead to instability and
catastrophic response of the system.

Interaction of two eigenvalues, which is obviously the most important case frequently taking
place in vibrational problems, has been studied. The study of eigenvalues of higher multiplicity as
well as investigation of some degenerate cases can be done using the methods developed in the
present paper.
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