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Abstract
The paper presents a general theory of coupling of eigenvalues of complex
matrices of an arbitrary dimension depending on real parameters. The cases of
weak and strong coupling are distinguished and their geometric interpretation
in two and three-dimensional spaces is given. General asymptotic formulae
for eigenvalue surfaces near diabolic and exceptional points are presented
demonstrating crossing and avoided crossing scenarios. Two physical examples
illustrate effectiveness and accuracy of the presented theory.

PACS numbers: 02.10.Yn, 02.40.Xx

1. Introduction

The behaviour of eigenvalues of matrices dependent on parameters is a problem of general
interest having many important applications in natural and engineering sciences. Probably,
Hamilton (1833) was the first who revealed an interesting physical effect associated with
coincident eigenvalues known as conical refraction, see also Berry et al (1999). In modern
physics, e.g. quantum mechanics, crystal optics, physical chemistry, acoustics and mechanics,
singular points of matrix spectra associated with specific effects have attracted great interest
of researchers since the papers Von Neumann and Wigner (1929), Herring (1937), Teller
(1937). These are the points where matrices possess multiple eigenvalues. In applications the
case of double eigenvalues is the most important. With a change of parameters, coupling and
decoupling of eigenvalues with crossing and avoided crossing scenarios occur. The crossing of
eigenvalue surfaces (energy levels) is connected with the topic of geometrical phase, see Berry
and Wilkinson (1984). In recent papers, see e.g. Heiss (2000), Dembowsky et al (2001), Berry
and Dennis (2003), Dembowski et al (2003), Keck et al (2003), Korsch and Mossmann (2003),
Heiss (2004), Stehmann et al (2004), two important cases are distinguished: the diabolic points
(DPs) and the exceptional points (EPs). From the mathematical point of view DP is a point
where the eigenvalues coalesce (become double), while corresponding eigenvectors remain
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different (linearly independent); and EP is a point where both eigenvalues and eigenvectors
merge forming a Jordan block. Both the DP and EP cases are interesting in applications and
were observed in experiments, see e.g. Dembowsky et al (2001), Dembowski et al (2003),
Stehmann et al (2004). In early studies only real and Hermitian matrices were considered
while modern physical systems require the study of complex symmetric and non-symmetric
matrices, see Mondragon and Hernandez (1993), Hernandez et al (2003), Berry and Dennis
(2003), Keck et al (2003). Note that most of the cited papers dealt with specific 2 × 2
matrices depending on two or three parameters. Of course, in the vicinity of an EP (and also
DP) the m-dimensional matrix problem becomes effectively two-dimensional, but finding the
corresponding two-dimensional space for a general m-dimensional matrix family is a nontrivial
problem (Arnold 1983).

In this paper we present a general theory of coupling of eigenvalues of complex matrices
of arbitrary dimension smoothly depending on multiple real parameters. Two essential cases
of weak and strong coupling based on a Jordan form of the system matrix are distinguished.
These two cases correspond to diabolic and exceptional points, respectively. We derive
general formulae describing coupling and decoupling of eigenvalues, crossing and avoided
crossing of eigenvalue surfaces. We present typical (generic) pictures showing the movement
of eigenvalues, the eigenvalue surfaces and their cross-sections. It is emphasized that the
presented theory of coupling of eigenvalues of complex matrices gives not only qualitative,
but also quantitative results on the behaviour of eigenvalues based only on the information
taken at the singular points. Two examples on the propagation of light in a homogeneous non-
magnetic crystal possessing natural optical activity (chirality) and dichroism (absorption) in
addition to biaxial birefringence illustrate basic ideas and effectiveness of the developed theory.

The presented theory is based on the previous research on interaction of eigenvalues of
real matrices depending on multiple parameters with mechanical applications. In Seyranian
(1991), Seyranian (1993) the important notion of weak and strong coupling (interaction) was
introduced for the first time. In the papers, Seyranian and Pedersen (1993), Seyranian et al
(1994), Mailybaev and Seyranian (1999), Seyranian and Kliem (2001), Seyranian and
Mailybaev (2001), Kirillov and Seyranian (2002), Seyranian and Mailybaev (2003a), Kirillov
(2004), Kirillov and Seyranian (2004), and in the recent book Seyranian and Mailybaev
(2003b), significant mechanical effects related to diabolic and exceptional points were
studied. These include transference of instability between eigenvalue branches, bimodal
solutions in optimal structures under stability constraints, flutter and divergence instabilities
in undamped nonconservative systems, effect of gyroscopic stabilization, destabilization of
a nonconservative system by infinitely small damping, which were described and explained
from the point of view of coupling of eigenvalues. An interesting application of the results on
eigenvalue coupling to electrical engineering problems is given in Dobson et al (2001).

The paper is organized as follows. In section 2 we present general results on weak and
strong coupling of eigenvalues of complex matrices depending on parameters. These two
cases correspond to the study of eigenvalue behaviour near diabolic and exceptional points.
Section 3 is devoted to crossing and avoided crossing of eigenvalue surfaces near double
eigenvalues with one and two eigenvectors. Two physical examples are presented in section 4,
and finally we end up with the conclusion in section 5.

2. Coupling of eigenvalues

Let us consider the eigenvalue problem

Au = λu (1)
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Table 1. Co-dimensions of eigenvalue degeneracies.

Matrix type Co-dimension of DP Co-dimension of EP

Real symmetric 2 Non-existent
Real nonsymmetric 3 1
Hermitian 3 Non-existent
Complex symmetric 4 2
Complex nonsymmetric 6 2

for a general m × m complex matrix A smoothly depending on a vector of n real parameters
p = (p1, . . . , pn). Assume that, at p = p0, the eigenvalue coupling occurs, i.e., the matrix
A0 = A(p0) has an eigenvalue λ0 of multiplicity 2 as a root of the characteristic equation
det(A0 − λ0I) = 0; I is the identity matrix. This double eigenvalue can have one or two linearly
independent eigenvectors u, which determine the geometric multiplicity. The eigenvalue
problem adjoint to (1) is

A∗v = ηv, (2)

where A∗ = A
T

is the adjoint matrix operator (Hermitian transpose), see e.g. Lancaster (1969).
The eigenvalues λ and η of problems (1) and (2) are complex conjugate: η = λ.

Double eigenvalues appear at sets in parameter space, whose co-dimensions depend on
the matrix type and the degeneracy (EP or DP). In table 1, we list these co-dimensions based
on the results of the singularity theory (Von Neumann and Wigner 1929, Arnold 1983). In
this paper we analyse general (nonsymmetric) complex matrices. The EP degeneracy is the
most typical for this type of matrices. In comparison with EP, the DP degeneracy is a rare
phenomenon in systems described by general complex matrices. However, some nongeneric
situations may be interesting from the physical point of view. As an example, we mention
complex non-Hermitian perturbations of symmetric two-parameter real matrices, when the
eigenvalue surfaces have coffee-filter singularity, see Mondragon and Hernandez (1993),
Berry and Dennis (2003), Keck et al (2003). A general theory of this phenomenon will be
given in our companion paper Kirillov et al (2004).

Let us consider a smooth perturbation of parameters in the form p = p(ε), where
p(0) = p0 and ε is a small real number. For the perturbed matrix A = A(p(ε)), we have

A = A0 + εA1 +
1

2
ε2A2 + o(ε2),

A0 = A(p0), A1 =
n∑

i=1

∂A
∂pi

dpi

dε
, A2 =

n∑
i=1

∂A
∂pi

d2pi

dε2
+

n∑
i,j=1

∂2A
∂pi∂pj

dpi

dε

dpj

dε
.

(3)

The double eigenvalue λ0 generally splits into a pair of simple eigenvalues under the
perturbation. Asymptotic formulae for these eigenvalues and corresponding eigenvectors
contain integer or fractional powers of ε (Vishik and Lyusternik 1960).

2.1. Weak coupling of eigenvalues

Let us consider the coupling of eigenvalues in the case of λ0 with two linearly independent
eigenvectors u1 and u2. This coupling point is known as a diabolic point. Let us denote by v1

and v2 two eigenvectors of the complex conjugate eigenvalue η = λ for the adjoint eigenvalue
problem (2) satisfying the normalization conditions

(u1, v1) = (u2, v2) = 1, (u1, v2) = (u2, v1) = 0, (4)
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(a) (b)

Figure 1. Eigenvalue couplings: (a) weak and (b) strong.

where (u, v) = ∑m
i=1 uivi denotes the Hermitian inner product. Conditions (4) define the

unique vectors v1 and v2 for given u1 and u2 (Seyranian and Mailybaev 2003b).
For nonzero small ε, the two eigenvalues λ+ and λ− resulting from the bifurcation of λ0

and the corresponding eigenvectors u± are given by

λ± = λ0 + µ±ε + o(ε), u± = α±u1 + β±u2 + o(1). (5)

The coefficients µ±, α± and β± are found from the 2 × 2 eigenvalue problem (see e.g.
Seyranian and Mailybaev (2003b))(

(A1u1, v1) (A1u2, v1)

(A1u1, v2) (A1u2, v2)

) (
α±
β±

)
= µ±

(
α±
β±

)
. (6)

Solving the characteristic equation for (6), we find

µ± = (A1u1, v1) + (A1u2, v2)

2
±

√
((A1u1, v1)− (A1u2, v2))2

4
+ (A1u1, v2)(A1u2, v1). (7)

We note that for Hermitian matrices A one can take v1 = u1 and v2 = u2 in (6), where
the eigenvectors u1 and u2 are chosen satisfying the conditions (u1, u1) = (u2, u2) = 1 and
(u1, u2) = 0, and obtain the well-known formula, see Courant and Hilbert (1953).

As the parameter vector passes the coupling point p0 along the curve p(ε) in the parameter
space, the eigenvalues λ+ and λ− change smoothly and cross each other at λ0, see figure 1(a).
At the same time, the corresponding eigenvectors u+ and u− remain different (linearly
independent) at all values of ε including the point p0. We call this interaction weak coupling.
By means of eigenvectors, the eigenvalues λ± are well distinguished during the weak coupling.

We emphasize that despite the fact that eigenvalues λ± and the eigenvectors u± depend
smoothly on a single parameter ε, they are nondifferentiable functions of multiple parameters
at p0 in the sense of Frechét (Schwartz 1967).

2.2. Strong coupling of eigenvalues

Let us consider coupling of eigenvalues at p0 with a double eigenvalue λ0 possessing a
single eigenvector u0. This case corresponds to the exceptional point. The second vector
of the invariant subspace corresponding to λ0 is called an associated vector u1 (also called a
generalized eigenvector (Lancaster 1969)); it is determined by the equation

A0u1 = λ0u1 + u0. (8)

An eigenvector v0 and an associated vector v1 of the matrix A∗ are determined by

A∗
0v0 = λ0v0, A∗

0v1 = λ0v1 + v0, (u1, v0) = 1, (u1, v1) = 0, (9)
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where the last two equations are the normalization conditions determining v0 and v1 uniquely
for a given u1.

Bifurcation of λ0 into two eigenvalues λ± and the corresponding eigenvectors u± are
described by (see e.g. Seyranian and Mailybaev (2003b))

λ± = λ0 ± √
µ1ε + µ2ε + o(ε),

u± = u0 ± u1
√

µ1ε + (µ1u0 + µ2u1 − G−1A1u0)ε + o(ε),
(10)

where G = A0 − λ0I + u1v∗
1. The coefficients µ1 and µ2 are

µ1 = (A1u0, v0), µ2 = ((A1u0, v1) + (A1u1, v0))/2. (11)

With a change of ε from negative to positive values, the two eigenvalues λ± approach,
collide with infinite speed (derivative with respect to ε tends to infinity) at λ0, and diverge in
the perpendicular direction, see figure 1(b). The eigenvectors interact too. At ε = 0, they
merge to u0 up to a scalar complex factor. At nonzero ε, the eigenvectors u± differ from u0

by the leading term ±u1
√

µ1ε. This term takes the purely imaginary factor i as ε changes
the sign, for example altering from negative to positive values.

We call such a coupling of eigenvalues as strong. An exciting feature of the strong
coupling is that the two eigenvalues cannot be distinguished after the interaction. Indeed,
there is no natural rule telling how the eigenvalues before coupling correspond to those after
the coupling.

3. Crossing of eigenvalue surfaces

3.1. Double eigenvalue with a single eigenvector

Let, at the point p0, the spectrum of the complex matrix family A(p) contain a double
complex eigenvalue λ0 with an eigenvector u0 and an associated vector u1. The splitting of
the double eigenvalue with a change of the parameters is governed by equations (10) and (11).
Introducing the real n-dimensional vectors f, g, h, r with the components

fs = Re

(
∂A
∂ps

u0, v0

)
, gs = Im

(
∂A
∂ps

u0, v0

)
, (12)

hs = Re

((
∂A
∂ps

u0, v1

)
+

(
∂A
∂ps

u1, v0

))
, rs = Im

((
∂A
∂ps

u0, v1

)
+

(
∂A
∂ps

u1, v0

))
,

s = 1, . . . , n (13)

and neglecting higher order terms, we obtain from (10) an asymptotic formula

Re �λ + i Im �λ = ±
√

〈f,�p〉 + i〈g,�p〉 + 1
2 (〈h,�p〉 + i〈r,�p〉), (14)

where �λ = λ± − λ0,�p = p − p0, and angular brackets denote inner product of real
vectors: 〈a, b〉 = ∑n

s=1 asbs . From equation (14) it is clear that the eigenvalue remains
double in the first approximation if the two following equations are satisfied

〈f,�p〉 = 0, 〈g,�p〉 = 0. (15)

This means that the double complex eigenvalue with the Jordan chain of length 2 has co-
dimension 2. Thus, double complex eigenvalues occur at isolated points of the plane of two
parameters, and in the three-parameter space the double eigenvalues form a curve (Arnold
1983). Equations (15) define a tangent line to this curve at the point p0.

Taking square of (14), where the terms linear with respect to the increment of parameters
are neglected, and separating real and imaginary parts, we derive the equations

(Re �λ)2 − (Im �λ)2 = 〈f,�p〉, 2 Re �λ Im �λ = 〈g,�p〉. (16)
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(a) (b) (c)

Figure 2. Crossing and avoided crossing of eigenvalues.

Let us assume that f 2
1 + g2

1 �= 0, which is the nondegeneracy condition for the complex
eigenvalue λ0. Isolating the increment �p1 in one of the equations (16) and substituting it
into the other we get

g1(Re �λ)2 − 2f1 Re �λ Im �λ − g1(Im �λ)2 = γ, (17)

where γ is a small real constant

γ =
n∑

s=2

(fsg1 − f1gs)�ps. (18)

Equation (17) describes hyperbolic trajectories of the eigenvalues λ± in the complex plane
when only �p1 is changed and the increments �p2, . . . , �pn are fixed. Of course, any
component of the vector �p can be chosen instead of �p1.

Let us study the movement of eigenvalues in the complex plane in more detail. If �pj = 0,

j = 2, . . . , n, or if they are nonzero but satisfy the equality γ = 0, then equation (17) yields
two perpendicular lines which for g1 �= 0 are described by the expression

g1 Re(λ − λ0) −
(

f1 ±
√

f 2
1 + g2

1

)
Im(λ − λ0) = 0. (19)

These lines intersect at the point λ0 of the complex plane. Due to variation of the parameter
p1 two eigenvalues λ± approach along one of the lines (19), merge to λ0 at �p1 = 0, and
then diverge along the other line (19), perpendicular to the line of approach; see figure 2(b),
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where arrows show the motion of eigenvalues with a monotonous change of p1. Recall that
the eigenvalues that born after the coupling cannot be identified with the eigenvalues before
the coupling.

If γ �= 0, then equation (17) defines a hyperbola in the complex plane. Indeed, for g1 �= 0
it is transformed into the equation of hyperbola

(g1 Re(λ − λ0) − f1 Im(λ − λ0))
2 − (Im(λ − λ0))

2
(
f 2

1 + g2
1

) = γg1 (20)

with the asymptotes described by equation (19). As �p1 changes monotonously, two
eigenvalues λ+ and λ− moving each along its own branch of hyperbola come closer, turn
and diverge; see figures 2(a), (c). Note that for a small γ the eigenvalues λ± come arbitrarily
close to each other without coupling that means avoided crossing. When γ changes sign, the
quadrants containing hyperbola branches are changed to the adjacent.

Expressing Im �λ from the second of equations (16), substituting it into the first
equation and then isolating Re �λ, we find

Re λ± = λ0 + 1
2 〈h,�p〉 ±

√
1
2 (〈f,�p〉 +

√
〈f,�p〉2 + 〈g,�p〉2). (21)

A similar transformation yields

Im λ± = λ0 + 1
2 〈r,�p〉 ±

√
1
2 (−〈f,�p〉 +

√
〈f,�p〉2 + 〈g,�p〉2). (22)

Equations (21) and (22) describe the behaviour of real and imaginary parts of eigenvalues
λ± with a change of the parameters. On the other hand they define hypersurfaces in the spaces
(p1, p2, . . . , pn, Re λ) and (p1, p2, . . . , pn, Im λ). The sheets Re λ+(p) and Re λ−(p) of the
eigenvalue hypersurface (21) are connected at the points of the set

Re �λ = 1
2 〈h,�p〉, 〈g,�p〉 = 0, 〈f,�p〉 � 0, (23)

where the real parts of the eigenvalues λ± coincide: Re λ− = Re λ+. Similarly, the set

Im �λ = 1
2 〈r,�p〉, 〈g,�p〉 = 0, 〈f,�p〉 � 0, (24)

glues the sheets Im λ+(p) and Im λ−(p) of the eigenvalue hypersurface (22).
To study the geometry of the eigenvalue hypersurfaces we look at their two-dimensional

cross-sections. Consider for example the functions Re λ(p1) and Im λ(p1) at fixed values of
the other parameters p2, p3, . . . , pn. When increments �ps = 0, s = 2, 3, . . . , n, both real
and imaginary parts of the eigenvalues λ± cross at p1 = p0

1, see figure 2(b). The crossings
are described by the double cusps defined by the equations following (21) and (22) as

Re �λ = ±

√√√√f1 ±
√

f 2
1 + g2

1

2
�p1 +

h1

2
�p1,

Im �λ = ±

√√√√−f1 ±
√

f 2
1 + g2

1

2
�p1 +

r1

2
�p1.

(25)

For fixed �ps �= 0, s = 2, 3, . . . , n, either real parts of the eigenvalues λ± cross due to
variation of p1 and imaginary parts avoid crossing or vice versa, as shown in figures 2(a), (c).
Note that these two cases correspond to level crossing and width repulsion or vice versa
studied in Heiss (2000). The crossings, which occur at p×

1 = p0
1 − ∑n

s=2(gs/g1)�ps and

Re λh = Re λ0 − 1

2g1

n∑
s=2

(h1gs − g1hs)�ps,

Im λr = Im λ0 − 1

2g1

n∑
s=2

(r1gs − g1rs)�ps,

(26)
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Figure 3. Crossing of eigenvalue surfaces near the double eigenvalue with a single eigenvector.

are described by equations (21) and (22). In the vicinity of the crossing points the tangents
of two intersecting curves are

Re λ = Re λh +

(
h1

2
± g1

2

√
g1

γ

) (
p1 − p×

1

)
, (27)

Im λ = Im λr +

(
r1

2
± g1

2

√
−g1

γ

) (
p1 − p×

1

)
, (28)

where the coefficient γ is defined by equation (18). Lines (27) and (28) tend to the vertical
position as γ → 0 and coincide at γ = 0. The avoided crossings are governed by the
equations (21) and (22).

If the vector of parameters consists of only two components p = (p1, p2), then in the
vicinity of the point p0, corresponding to the double eigenvalue λ0, the eigenvalue surfaces
(21) and (22) have the form of the well-known Whitney umbrella; see figure 3. The sheets
of the eigensurfaces are connected along the rays (23) and (24). We emphasize that these
rays are inclined with respect to the plane of the parameters p1, p2. The cross-sections of the
eigensurfaces by the planes orthogonal to the axis p2, described by equations (25)–(28), are
shown in figure 2.

Note that rays (23), (24) and the point p0 are well known in crystal optics as the branch
cuts and the singular axis, respectively (Berry and Dennis 2003). We emphasize that the
branch cut is a general phenomenon: it always appears near the EP degeneracy. In general,
branch cuts may be infinite or end up at another EP. The second scenario is always the case
when the complex matrix A(p) is a small perturbation of a family of real symmetric matrices
(Kirillov et al 2004).

Consider the movement of the eigenvalues in the complex plane near the point p0 due to
the cyclic variation of the parameters p1 and p2 of the form �p1 = a + r cos ϕ and �p2 =
b + r sin ϕ, where a, b, and r are small parameters of the same order. From equations (16)
we derive

(g1(Re �λ)2 − 2f1 Re �λ Im �λ − g1(Im �λ)2 − b(f2g1 − f1g2))
2 + (g2(Re �λ)2

− 2f2 Re �λ Im �λ − g2(Im �λ)2 − a(f1g2 − g1f2))
2 = (f2g1 − f1g2)

2r2.

(29)

The movement of eigenvalues on the complex plane governed by equation (29) is shown
in figure 4. If the contour encircles the point p0, then the eigenvalues move along the curve
(29) around the double eigenvalue λ0 in the complex plane, see figure 4(c). Indeed, in this
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(a) (b) (c) (e)(d)

Figure 4. Movement of eigenvalues due to cyclic evolution of the parameters.

case a2 + b2 < r2 and the loop (29) crosses the lines Re λ = Re λ0 and Im λ = Im λ0 at the
four points given by the equations

(Im �λ)2 =
(f2g1 − f1g2)

(
g2a − g1b ±

√
(g2a − g1b)2 + (r2 − a2 − b2)

(
g2

1 + g2
2

))
g2

1 + g2
2

(30)

and

(Re �λ)2 =
(f2g1 − f1g2)

(
g1b − g2a ±

√
(g1b − g2a)2 + (r2 − a2 − b2)

(
g2

1 + g2
2

))
g2

1 + g2
2

, (31)

respectively. When a2 + b2 = r2 the loop overlaps at the double eigenvalue and its form
depends on the sign of the quantity σ = (f2g1 − f1g2)(g1b − g2a). If σ < 0 the eigenvalues
cross the line Re λ = Re λ0 (figure 4(b)), otherwise they cross the line Im λ = Im λ0

(figure 4(d)). Eigenvalues strongly couple at the point λ0 in the complex plane. For a2 +
b2 > r2 the circuit in the parameter plane does not contain the point p0 and the eigenvalues
move along the two different closed paths (‘kidneys’ (Arnold 1989)) in the complex plane,
see figures 4(a), (e). Each eigenvalue crosses the line Re λ = Re λ0 twice for σ < 0
(figure 4(a)), and for σ > 0 they cross the line Im λ = Im λ0 (figure 4(d)). Note that the
‘kidneys’ in the complex plane were observed in Korsch and Mossmann (2003) for the specific
problem of Stark resonances for a double δ quantum well.

3.2. Double eigenvalue with two eigenvectors

Let λ0 be a double eigenvalue of the matrix A0 = A(p0) with two eigenvectors u1 and u2.
Under the perturbation of parameters p = p0 + �p, the bifurcation of λ0 into two simple
eigenvalues λ+ and λ− occurs. Using (5) and (7), we obtain the asymptotic formula for λ±
under multiparameter perturbation as

λ± = λ0 +
〈d11 + d22,�p〉

2
±

√
〈d11 − d22,�p〉2

4
+ 〈d12,�p〉〈d21,�p〉, (32)

where dij = (
d1

ij , . . . , d
n
ij

)
is a complex vector with the components

dk
ij =

(
∂A
∂pk

ui , vj

)
, (33)

and 〈dij , �p〉 = 〈Re dij , �p〉 + i〈Im dij , �p〉. In the same way as we derived formulae (21)
and (22), we obtain from (32) the expressions for real and imaginary parts of λ± in the form

Re λ± = Re λ0 + Re〈d11 + d22,�p〉/2 ±
√

(|c| + Re c)/2, (34)

Im λ± = Im λ0 + Im〈d11 + d22,�p〉/2 ±
√

(|c| − Re c)/2, (35)
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where

c = 〈d11 − d22,�p〉2/4 + 〈d12,�p〉〈d21,�p〉. (36)

Considering the situation when λ0 remains double under the perturbation of parameters,
i.e. λ+ = λ−, we obtain the two independent equations

Re c = 0, Im c = 0. (37)

By using (5)–(7), one can show that the perturbed double eigenvalue λ+ = λ− possesses a
single eigenvector u+ = u−, i.e., the weak coupling becomes strong due to perturbation, see
Seyranian and Mailybaev (2003b).

The perturbed double eigenvalue has two eigenvectors only when the matrix in the left-
hand side of (6) is proportional to the identity matrix. This yields the equations

〈d11,�p〉 = 〈d22,�p〉, 〈d12,�p〉 = 〈d21,�p〉 = 0. (38)

Conditions (38) imply (37) and represent six independent equations taken for real and
imaginary parts. Thus, weak coupling of eigenvalues is a phenomenon of co-dimension 6,
which generically occurs at isolated points in six-parameter space, see Arnold (1983),
Mondragon and Hernandez (1993).

First, let us study the behaviour of the eigenvalues λ+ and λ− depending on one
parameter, say p1, when the other parameters p2, . . . , pn are fixed in the neighbourhood
of the coupling point λ+(p0) = λ−(p0) = λ0. In the case �p2 = · · · = �pn = 0, expression
(32) yields

λ± = λ0 +


d1

11 + d1
22

2
±

√(
d1

11 − d1
22

)2

4
+ d1

12d
1
21


 �p1. (39)

The two eigenvalues couple when �p1 = 0 with the double eigenvalue λ0, see figure 5(a).
As we have shown in section 2, the eigenvalues λ+ and λ− behave as smooth functions at
the coupling point; they possess different eigenvectors, which are smooth functions of �p1

too.
If perturbations �p2, . . . ,�pn are nonzero, the avoided crossing of the eigenvalues λ±

with a change of p1 is a typical scenario. We can distinguish different cases by checking
intersections of real and imaginary parts of λ+ and λ−. By using (34), we find that
Re λ+ = Re λ− if

Im c = 0, Re c < 0. (40)

Analogously, from (35) it follows that Im λ+ = Im λ− if

Im c = 0, Re c > 0. (41)

Let us write expression (36) in the form

c = c0 + c1�p1 + c2(�p1)
2, (42)

where

c0 =
n∑

k,l=2

[(
dk

11 − dk
22

)(
dl

11 − dl
22

)/
4 + dk

12d
l
21

]
�pk�pl,

c1 =
n∑

k=2

[(
d1

11 − d1
22

)(
dk

11 − dk
22

)/
2 +

(
d1

12d
k
21 + dk

12d
1
21

)]
�pk,

c2 = (
d1

11 − d1
22

)2/
4 + d1

12d
1
21.

(43)
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(a)

(b)

(c)

(d)

(e)

Figure 5. Weak coupling of eigenvalues and avoided crossing.

If the discriminant D = (Im c1)
2 − 4 Im c0 Im c2 > 0, the equation Im c = 0 yields two

solutions

�pa
1 = −Im c1 − √

D

2 Im c2
, �pb

1 = −Im c1 +
√

D

2 Im c2
. (44)

There are no real solutions if D < 0, and the single solution corresponds to the degenerate
case D = 0. At the points pa

1 = p0
1 + �pa

1 and pb
1 = p0

1 + �pb
1 the values of c are real,

and we denote them by ca and cb, respectively. According to (40) and (41), the sign of ca,b

determines whether the real or imaginary parts of λ± coincide at p
a,b
1 .

In the nondegenerate case D �= 0, there are four types of avoided crossing shown in
figures 5(b)–(e). The first case corresponds to D < 0 when both real and imaginary parts
of the eigenvalues λ± are separate at all p1, see figure 5(b). In other cases D > 0, so that
there are two separate points pa

1 and pb
1 . For the second type we have ca > 0 and cb < 0,

when both real and imaginary parts of λ± have a single intersection, see figure 5(c). The
equivalent situation when ca < 0 and cb > 0 is obtained by interchanging the points pa

1 and
pb

1 in figure 5(c). The third type is represented by ca,b < 0, when the real parts of λ± have
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two intersections and Im λ± do not intersect, see figure 5(d). Finally, if ca,b > 0, when the
real parts of λ± do not intersect and Im λ± intersect at both pa

1 and pb
1 , see figure 5(e). The

last column in figure 5 shows the behaviour of the eigenvalues λ± on the complex plane. In
each of the cases (b)–(e), the trajectories of eigenvalues on the complex plane may intersect
and/or self-intersect, which can be studied by using expression (32). Note that intersections
of the eigenvalue trajectories on the complex plane do not imply eigenvalue coupling since
the eigenvalues λ+ and λ− pass the intersection point at different values of p1. The small
loops of the eigenvalue trajectories on the complex plane, shown in figures 5(b), (e), shrink
as the perturbations of the parameters �p2,�p3, . . . ,�pn tend to zero. Finally, we mention
that the case of figure 5(c) is the only avoided crossing scenario when the eigenvalues follow
the initial directions on the complex plane after interaction. In the other three cases (b), (d),
and (e) the eigenvalues interchange their directions due to the interaction.

Let us consider a system depending on two parameters p1 and p2 with the weak coupling
of eigenvalues at p1 = p0

1 and p2 = p0
2. The double eigenvalue λ0 bifurcates into a pair λ±

under the perturbation of parameters �p1 and �p2. Conditions (40) and (41) determine the
values of parameters, at which the real and imaginary parts of λ± coincide.

Let us write expression (36) in the form

c = c11(�p1)
2 + c12�p1�p2 + c22(�p2)

2, (45)

where

c11 = (
d1

11 − d1
22

)2/
4 + d1

12d
1
21, c22 = (

d2
11 − d2

22

)2/
4 + d2

12d
2
21,

c12 = (
d1

11 − d1
22

)(
d2

11 − d2
22

)/
2 + d1

12d
2
21 + d2

12d
1
21.

(46)

If the discriminant D′ = (Im c12)
2 − 4 Im c11 Im c22 > 0, the equation Im c = 0 yields the

two crossing lines

la: 2 Im c11�p1 + (Im c12 +
√

D′)�p2 = 0,

lb: 2 Im c11�p1 + (Im c12 −
√

D′)�p2 = 0.
(47)

There are no real solutions if D′ < 0, and the lines la and lb coincide in the degenerate case
D′ = 0. On the lines la,b the values of c are real numbers of the same sign; we denote
γa = sign (c) for the line la , and γb = sign (c) for the line lb. According to (40) and (41), the
real or imaginary parts of λ± coincide at la,b for negative or positive γa,b, respectively.

One can distinguish four types of the graphs for Re λ±(p1, p2) and Im λ±(p1, p2)

shown in figure 6. In the nondegenerate case D′ �= 0, the eigenvalues λ+ and λ− are different
for all parameter values except the initial point p1,2 = p0

1,2. If D′ < 0, the eigenvalue surfaces
are cones with non-elliptic cross-section, see figure 6(a). Other three types correspond to the
case D′ > 0. If γa < 0 and γb > 0 then there is an intersection of the real parts along the
line la and an intersection of the imaginary parts along the line lb (in case γa > 0 and γb < 0
the lines la and lb are interchanged), see figure 6(b). If γa < 0 and γb < 0 then the real
parts intersect along both the lines la and lb forming a ‘cluster of shells’, while there is no
intersections for the imaginary parts, see figure 6(c). Finally, if γa > 0 and γb > 0 then there
is no intersections for the real parts, while the imaginary parts intersect along the both lines
la and lb, see figure 6(d).

4. Example

As a physical example, we consider the propagation of light in a homogeneous non-magnetic
crystal in the general case when the crystal possesses natural optical activity (chirality) and
dichroism (absorption) in addition to biaxial birefringence, see Berry and Dennis (2003)
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(a)

(b)

(c)

(d)

Figure 6. Eigenvalue surfaces near a point of weak coupling.

for the general formulation. The optical properties of the crystal are characterized by the
inverse dielectric tensor η. The vectors of electric field E and displacement D are related as
(Landau et al 1984)

E = ηD. (48)

The tensor η is described by a non-Hermitian complex matrix. The electric field E and
magnetic field H in the crystal are determined by Maxwell’s equations (Landau et al 1984)

rot E = −1

c

∂H
∂t

, rot H = 1

c

∂D
∂t

, (49)

where t is time and c is the speed of light in vacuum.
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A monochromatic plane wave of frequency ω that propagates in a direction specified by
a real unit vector s = (s1, s2, s3) has the form

D(r, t) = D(s) exp iω

(
n(s)
c

sT r − t

)
, H(r, t) = H(s) exp iω

(
n(s)
c

sT r − t

)
, (50)

where n(s) is a refractive index, and r = (x1, x2, x3) is the real vector of spatial coordinates.
Substituting the wave (50) into Maxwell’s equations (49), we find

H = n[s, ηD], D = −n[s, H], (51)

where square brackets indicate the cross product of vectors (Landau et al 1984). With
the vector H determined by the first equation of (51), the second equation of (51) yields
(Berry and Dennis 2003)

−[s, [s, ηD(s)]] = ηD(s) − s(sT ηD(s)) = 1

n2(s)
D(s). (52)

Multiplying equation (52) by the vector sT from the left we find that for plane waves the vector
D is always orthogonal to the direction s, i.e., sT D(s) = 0.

Since the quantity sT ηD(s) is a scalar, we can write (52) in the form of an eigenvalue
problem for the complex non-Hermitian matrix A(s) dependent on the vector of parameters
s = (s1, s2, s3):

Au = λu, A(s) = (I − ssT )η(s), (53)

where λ = n−2, u = D, and I is the identity matrix. Multiplying the matrix A by the vector
s from the left we conclude that sT A = 0, i.e., the vector s is the left eigenvector with the
eigenvalue λ = 0. Zero eigenvalue always exists, because det(I − ssT ) ≡ 0, if ‖s‖ = 1.

The matrix A(s) defined by equation (53) is a product of the matrix I− ssT and the inverse
dielectric tensor η(s). The symmetric part of η constitutes the anisotropy tensor describing
the birefringence of the crystal. It is represented by the complex symmetric matrix U, which
is independent of the vector of parameters s. The antisymmetric part of η is determined by
the optical activity vector g(s) = (g1, g2, g3), describing the chirality (optical activity) of the
crystal. It is represented by the skew-symmetric matrix

G = i


 0 −g3 g2

g3 0 −g1

−g2 g1 0


 . (54)

The vector g is given by the expression g(s) = γs, where γ is the optical activity tensor
represented by a symmetric complex matrix. Thus, the matrix G(s) depends linearly on the
parameters s1, s2, s3.

In the present formulation, the problem has been studied analytically and numerically in
Berry and Dennis (2003). Below we present two specific numerical examples in the case of
a non-diagonal matrix γ, for which the structure of singularities was not fully investigated.
Unlike Berry and Dennis (2003), where the reduction to two dimensions was carried out, we
work with the three-dimensional form of problem (53). Our intention here is to give guidelines
for using our theory by means of the relatively simple 3 × 3 matrix family, keeping in mind
that the main area of applications would be higher dimensional problems.

As a first example, we choose the inverse dielectric tensor in the form

η =

3 0 0

0 1 0
0 0 2


 + i


0 1 2

1 0 0
2 0 0


 + i


0 −s1 0

s1 0 −s3

0 s3 0


 (55)
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Figure 7. Eigensurfaces of the crystal (55) and their approximations.

where s3 =
√

1 − s2
1 − s2

2 . The crystal defined by (55) is dichroic and optically active with the
non-diagonal matrix γ. When s1 = 0 and s2 = 0 the spectrum of the matrix A consists of the
double eigenvalue λ0 = 2 and the simple zero eigenvalue. The double eigenvalue possesses
the eigenvector u0 and associated vector u1:

u0 =

 i

−1
0


 , u1 =


0

1
0


 . (56)

The eigenvector v0 and associated vector v1 corresponding to the double eigenvalue λ0 = 2
of the adjoint matrix A∗ are

v0 =

 i

1
1 + i/2


 , v1 =


 i

0
1/2 − i/4


 . (57)

The vectors u0, u1 and v0, v1 satisfy the normalization and orthogonality conditions (9).
Calculating the derivatives of the matrix A(s1, s2) at the point s0 = (0, 0, 1) we obtain

∂A
∂s1

=

−2i −2i −2

i 0 0
−3 −i −2i


 ,

∂A
∂s2

=

 0 0 0

−2i −i −2
−i −1 i


 . (58)

Substitution of the derivatives (58) together with the vectors given by equations (56)
and (57) into formulae (12) and (13) yields the vectors f, g and h, r as

f = (0, 4), g = (−4, 0), h = (0, 0), r = (−4, 0). (59)

With the vectors (59) we find from (21) and (22) the approximations of the eigensurfaces
Re λ(s1, s2) and Im λ(s1, s2) in the vicinity of the point s0 = (0, 0, 1):

Re λ± = 2 ±
√

2s2 + 2
√

s2
1 + s2

2 , Im λ± = −2s1 ±
√

−2s2 + 2
√

s2
1 + s2

2 . (60)

Calculation of the exact solution of the characteristic equation for the matrix A with the inverse
dielectric tensor η defined by equation (55) shows a good agreement of the approximations
(60) with the numerical solution, see figure 7. One can see that both the surfaces of real
and imaginary parts have a Whitney umbrella singularity at the coupling point; the surfaces
self-intersect along different rays, which together constitute a straight line when projected on
the parameter plane.
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Figure 8. Eigensurfaces of the crystal (61) and their approximations.

As a second numerical example, let us consider the inverse dielectric tensor as

η =

1 0 1

0 1 0
1 0 4


 + i


5 0 4

0 5 2
4 2 0


 + 4i


 0 −s1 − is2 is3

s1 + is2 0 −s3

−is3 s3 0


 . (61)

At s = (0, 0, 1), the matrix A has the double eigenvalue λ0 = 1 + 5i with two eigenvectors
and the simple zero eigenvalue. The eigenvectors u1, u2 of λ0 and the eigenvectors v1, v2 of
λ0 for the adjoint matrix A∗ are

u1 =

1

0
0


 , u2 =


0

1
0


 , v1 =


 1

0
−3−4i
1−5i


 , v2 =


 0

1
2i

1−5i


 . (62)

These vectors satisfy normalization conditions (4). Taking derivatives of the matrix A with
respect to parameters s1 and s2, where s3 =

√
1 − s2

1 − s2
2 , and using formula (33), we obtain

d11 = (−2 − 8i, 0), d12 = (6i,−9 − 4i),

d21 = (−10i, 7 − 4i), d22 = (0,−4i).
(63)

Using (63) in formulae (34)–(36), we find approximations for real and imaginary parts of
two nonzero eigenvalues λ± near the point s = (0, 0, 1) as

Re λ± = 1 − s1 ±
√

(|c| + Re c)/2, Im λ± = 5 − 4s1 − 2s2 ±
√

(|c| − Re c)/2, (64)

where c = (45 + 8i)s2
1 + 128is1s2 + (−83 + 8i)s2

2 .
Approximations of eigenvalue surfaces (64) and the exact solutions are presented in

figure 8. The eigenvalue surfaces have intersections both in (s1, s2, Re λ) and (s1, s2, Im λ)

spaces. These intersections are represented by two different lines la and lb in parameter space,
see figure 6(b).

5. Conclusion

A general theory of coupling of eigenvalues of complex matrices smoothly depending on
multiple real parameters has been presented. Diabolic and exceptional points have been
mathematically described and general formulae for coupling of eigenvalues at these points
have been derived. This theory gives a clear and complete picture of crossing and avoided
crossing of eigenvalues with a change of parameters. It has a very broad field of applications
since any physical system contains parameters. It is important that the presented theory of
coupling gives not only qualitative, but also quantitative results on eigenvalue surfaces based
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only on the information at the diabolic and exceptional points. This information includes
eigenvalues, eigenvectors and associated vectors with derivatives of the system matrix taken
at the singular points. We emphasize that the developed methods provide a firm basis for the
analysis of spectrum singularities of matrix operators.
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