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Abstract

We consider shock waves satisfying the viscous profile criterion in general
systems of n conservation laws. We study Si,j dual-family shock waves, which
are associated with a pair of characteristic families i and j. We explicitly
introduce defining equations relating states and speeds of Si,j shocks, which
include the Rankine–Hugoniot conditions and additional equations resulting
from the viscous profile requirement. Then we develop a constructive method
for finding the general local solution of the defining equations for such shocks
and derive formulae for the sensitivity analysis of Si,j shocks under change
of problem parameters. All possible structures of solutions of the Riemann
problems containing Si,j shocks and classical waves are described. As a physical
application, all types of Si,j shocks with i > j are detected and studied in a
family of models for multi-phase flow in porous media.

Keywords: Dual-family shock, viscous profile, conservation laws, sensitivity analy-
sis, Riemann problem, multi-phase flow, porous medium

1 Introduction

In this paper, shock waves in general systems of n conservation laws in one space
dimension x are considered. When shock waves are required to possess viscous profiles
rather than to satisfy Lax’s inequalities, new types of shocks arise. In general, these
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shocks may be associated with the i-th characteristic family on the left and the j-th
characteristic family on the right. We call such waves Si,j dual-family shocks. It
was shown in [5] (see also [6]) that for i > j the viscous profile requirement provides
exactly the number of additional equations (i − j equations) that is necessary to
ensure that the number of characteristics emanating from the shock in positive time
direction equals the number of independent equations at the shock interface.

For systems of two equations, transitional shock waves (i = j + 1) were studied
in [4, 12, 14], and novel structures of Riemann solutions resulting from such shocks
were described. Shock waves with one or several additional equations for the viscous
profile were found in problems of wave propagation in ferromagnetics, composite
elastic media, elastic beams, and MHD, see [6], and in three phase flow in porous
media they were analyzed for the case S2,1 in [11]. A program for studying stability
in the sense of Hadamard of Si,j shocks was presented in [7], where a simple example
of S3,1 shock was exhibited; another example of S3,1 shock can be found in [8].

In this paper, we explicitly introduce defining equations that relate states and
speeds of Si,j shocks. These equations include Rankine–Hugoniot conditions (basic
equations) and additional equations resulting from the viscous profile requirement.
Then we develop a constructive method for perturbation analysis of general dual-
family shocks under parameter change, in which relationships between states at op-
posite sides of the shock and shock speed resulting from perturbations of problem
parameters are derived.

The role of Si,j shocks in solutions of the Riemann problem is described. It turns
out that Si,j shocks with i > j may appear in generic Riemann solutions. The
presence of Si,j shocks with i > j + 1 leads to the repetition of separated classical
waves of the same characteristic family in a Riemann solution.

As a physical application, we consider a flow of multi-phase fluid through porous
medium with the quadratic Corey model for relative permeabilities of fluid phases.
For the identity viscosity matrix, we find analytically Si,j shocks for any i > j.
The method for finding these shocks by continuation for state-dependent viscosity
matrices of Corey type models is discussed. The variety and form of dual-family
shocks may be important for applications such as oil and gas recovery.

The paper is organized as follows. Dual-family shocks are introduced in Section 2.
Section 3 contains qualitative study of viscous profile requirement and defining equa-
tions. The defining equations relating states and speeds of Si,j shocks are explicitly
given in Section 4, and variation of these equations under change of problem param-
eters is studied. Section 5 discusses structures of Riemann solutions containing Si,j

shocks. In Section 6, Si,j shocks are analyzed in multi-phase flow through porous
medium. The conclusion summarizes the contribution. Some technical proofs are
given in the Appendix.

2 Dual-family shock waves

We consider systems of partial differential equations of the form

∂G(U)

∂t
+

∂F (U)

∂x
= ε

∂

∂x

(
D(U)

∂U

∂x

)
, t ≥ 0, x ∈ R (2.1)
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in the vanishing viscosity limit ε ↘ 0. The function representing conserved quantities
G(U) ∈ Rn, the flux function F (U) ∈ Rn, and the n×n viscosity matrix D(U) depend
smoothly on the state vector U ∈ Rn. Taking ε = 0 in (2.1) yields a system of n
first-order conservation laws

∂G(U)

∂t
+

∂F (U)

∂x
= 0. (2.2)

Real eigenvalues λ(U) of the characteristic equation det(∂F/∂U −λ ∂G/∂U) = 0 are
the characteristic speeds. Assuming that all the eigenvalues are real and distinct in
a region of state space U (the strictly hyperbolic region), we list them in increasing
order λ1 < λ2 < · · · < λn.

A shock wave is a discontinuous (weak) solution of system (2.2) consisting of a
left state U− = limx/t↗s U(x, t) and a right state U+ = limx/t↘s U(x, t), where s is
the shock speed. A shock wave is considered admissible if there is a traveling wave
solution (or viscous profile) U(x, t) = U(ζ), ζ = (x − st)/ε of system (2.1), which
represents the shock in the vanishing viscosity limit ε ↘ 0. Substituting this solution
into (2.1) and integrating over ζ, we find that U(ζ) is a solution (orbit) of the system
of ordinary differential equations

D(U)U̇ = F (U)− F (U−)− s(G(U)−G(U−)), (2.3)

“connecting” the left equilibrium U(−∞) = U− to the right equilibrium U(+∞) =
U+; the dot denotes the derivative with respect to ζ.

By linearizing equation (2.3) about the equilibria U− and U+ we obtain

∆U̇ = B(U±, s)∆U, ∆U(ζ) = U(ζ)− U±, (2.4)

where B(U, s) is the n× n matrix

B(U, s) =
∂

∂U

[
D−1(U)

(
F (U)− F (U−)− s(G(U)−G(U−))

)]
. (2.5)

Let µi(U, s), i = 1, . . . , n be the eigenvalues of the matrix B(U, s) ordered with
increasing real parts Re µ1 ≤ Re µ2 ≤ · · · ≤ Re µn.

Let us define an Si,j shock as a shock possessing a viscous profile and satisfying
the inequalities

Si,j :
Re µi−1(U−, s) < 0 < Re µi(U−, s),

Re µj(U+, s) < 0 < Re µj+1(U+, s)
(2.6)

(if i−1 = 0 or j+1 = n+1, the corresponding inequality is disregarded). It is easy to
see that µi(U−, s) = 0 and µj(U+, s) = 0 if s = λi(U−) and s = λj(U+), respectively.
Under rather general conditions (see e.g. [6, 10]), inequalities (2.6) reduce to

Si,j :
λi−1(U−) < s < λi(U−),

λj(U+) < s < λj+1(U+).
(2.7)

For i = j, inequalities (2.7) are the Lax conditions. Thus, an Si,i shock is a
classical i-shock. Shocks with i < j are called overcompressive. For i = j + 1 such a
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shock is termed transitional or undercompressive. The inequalities in the first row of
(2.7) coincide with the Lax conditions for the left state U− of an i-shock. Analogously,
the inequalities in the second row of (2.7) coincide with the Lax conditions for the
right state U+ of a j-shock. Therefore, the Si,j shock can be seen as a dual-family
shock wave associated with the i-th characteristic family on the left and with the j-th
characteristic family on the right.

For characteristic shocks, the shock speed coincides with a characteristic speed at
left, right, or both sides. As it was noticed above, the eigenvalues µi(U−, s) or/and
µj(U+, s) vanish in these cases. Thus, we can distinguish three types of characteristic
shocks as

S−i,j : µi(U−, s) = 0, Re µj(U+, s) < 0 < Re µj+1(U+, s);

S+
i,j : Re µi−1(U−, s) < 0 < Re µi(U−, s), µj(U+, s) = 0;

S±i,j : µi(U−, s) = µj(U+, s) = 0.

(2.8)

Conditions (2.8) can be written in terms of characteristic speeds as

S−i,j : s = λi(U−), λj(U+) < s < λj+1(U+);

S+
i,j : λi−1(U−) < s < λi(U−), s = λj(U+);

S±i,j : s = λi(U−) = λj(U+).

(2.9)

3 Defining equations

Let us consider Si,j as a point in the space (U−, U+, s) of the left and right states and
speed of shocks. For each i, j, the set of all Si,j shocks can be expected to define a
smooth surface Si,j in the space (U−, U+, s); see [3] for an example of such a surface
for transitional shocks and quadratic flow functions. Locally this surface can be given
by a maximal rank system of equations. Following [6, 12], we distinguish the basic
equations defined by the system of conservation laws (2.2) and additional equations
determined by the viscous profile requirement. There are n basic equations, which
are the Rankine–Hugoniot conditions

H(U−, U+, s) ≡ F (U+)− F (U−)− s(G(U+)−G(U−)) = 0 ∈ Rn. (3.1)

These equations are obtained from the condition that the shock is a weak solution of
(2.2); they also follow from requiring that U+ is an equilibrium of (2.3).

Additional nadd equations are denoted by

Hadd(U−, U+, s) = 0 ∈ Rnadd

. (3.2)

The number of additional equations nadd can be determined by considering the in-
tersection of the unstable manifold Mu(U−) and the stable manifold Ms(U+) of the
equilibria U±. The viscous profile exists if the intersection of these manifolds is not
empty, see Figure 3.1(a). Using inequalities (2.6), we find

dimMu(U−) = n− i + 1, dimMs(U+) = j. (3.3)
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Figure 3.1: A viscous profile: (a) for Si,j shock, (b) and (c) for S±i,j shock.

Generically, the manifolds Mu(U−) and Ms(U+) intersect forming a locally struc-
turally stable phase state configuration if dimMu(U−) + dimMs(U+) > n, which
implies i ≤ j. In this case nadd = 0, i.e., there are no additional equations. Since the
intersection of the manifolds has dimension dimMu(U−)+dimMs(U+)−n = i−j+1,
generically there exists a single viscous profile for classical shocks (i = j) and an in-
finite number of viscous profiles for overcompressive shocks (i < j).

In case i > j, the manifolds Mu(U−) and Ms(U+) do not intersect in general.
More precisely, if Mu(U−) and Ms(U+) intersect and the intersection is a single
orbit, then this is a singular situation (the so-called nontransversal intersection) of
codimension i − j [2]. The least degenerate case in this situation occurs when the
tangent spaces of Mu(U−) and Ms(U+) have one-dimensional intersection at each
point of the connecting orbit (so-called quasi-transverse intersection). Therefore, the
number of additional equations (3.2) for Si,j shocks with i > j equals nadd = i− j.

Similar surfaces S−i,j, S+
i,j, and S±i,j, under some genericity assumptions for the na-

ture of nonhyperbolic equilibria, can be defined for characteristic dual-family shocks.
In these cases, there are one or two equations resulting from the conditions s = λ(U−)
or/and s = λ(U+). These equations are related to system (2.2) only, so that they
supplement the basic equations (3.1). In case s = λi(U−), the orbits of equation (2.3)
starting at U− as ζ → −∞ generally form a smooth manifold M0u(U−) of dimension
n− i+1 [16]. This manifold has a boundary, which is the unstable manifold Mu(U−)
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of dimension n − i, see Figure 3.1(b). We consider the generic situation when the
viscous profile U(ζ) does not lie in the boundary. Similarly, in case s = λj(U+), orbits
finishing at U+ as ζ → +∞ form a smooth manifold M0s(U+) of dimension j. This
manifold has a boundary, which is the stable manifold Ms(U+) of dimension j − 1,
see Figure 3.1(c). We assume that the viscous profile U(ζ) does not lie in Ms(U+).
The dimensions of M0u(U−) and M0s(U+) coincide with the dimensions (3.3) for Si,j

shocks. Hence, the number of additional equations remains the same, nadd = i− j.
The total number of defining equations provides codimensions of the shock sur-

faces:

i ≤ j : codimSi,j = n, codimS−i,j = codimS+
i,j = n + 1,

codimS±i,j = n + 2;
(3.4)

i > j : codimSi,j = n + i− j, codimS−i,j = codimS+
i,j = n + i− j + 1,

codimS±i,j = n + i− j + 2.
(3.5)

We wee that the viscous profile admissibility criterion for Si,j shocks plays qual-
itatively different role in cases i ≤ j and i > j. Indeed, for classical (i = j) and
overcompressive (i < j) shocks, generically the viscous profile is a structurally stable
connecting orbit that persists under small perturbations of shock states and speed
satisfying the Rankine-Hugoniot conditions (3.1). However, for Si,j shocks with i > j,
the existence of viscous profile implies additional relations between states and shock
speeds. These relations depend on the form of viscous terms governed by the viscosity
matrix D(U).

Notice that surfaces corresponding to characteristic shocks form a part of the Si,j

surface boundary. The remaining part of the Si,j boundary is related to bifurcations
of the viscous profile, see [13].

Example. Let us consider an Si,j shock with states U∗
−, U∗

+ and speed s∗ in a
system of three viscous conservation laws. There are n = 3 defining equations if i ≤ j
(classical and overcompressive shocks), which are the Rankine–Hugoniot conditions
(3.1). These equations can be solved for U+. As a result, there is a dual-family shock
of the same type with an arbitrary left state U− and speed s taken in neighborhoods
of U∗

− and s∗; the uniquely determined right state U+ is close to U∗
+, see Figure 3.2(a).

If i = j + 1 (transitional shocks S2,1 and S3,2), there is one additional equation,
which generically can be solved for the speed s. Therefore, for each left state U− in a
neighborhood of U∗

− there is a dual-family shock of the same type with the uniquely
determined right state U+ and speed s, see Figure 3.2(b).

Finally, there are two additional equations for an S3,1 shock. Solving these equa-
tions for s, the remaining equation defines a surface S− in the space U− passing
through U∗

−. Hence, S3,1 shocks exist only for left states U− chosen on this surface.
The speed and right state are given uniquely by the choice of a point U− ∈ S−, see
Figure 3.2(c).
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Figure 3.2: Viscous profiles of Si,j shocks for three conservation laws: (a) classical
and overcompressive shocks, i ≤ j, (b) S2,1 and S3,2 shocks (transitional shocks), (c)
S3,1 shocks.

4 Sensitivity analysis of Si,j shocks

In this section, we study the local form and perturbation of the shock surface Si,j.
In case i ≤ j, this information can be obtained directly by variation of the explicit
Rankine–Hugoniot conditions (3.1). Thus, we will focus on the case i > j when the
viscous profile condition results in additional equations (3.2).

Let us determine explicitly the system of additional equations. Consider a viscous
profile U(ζ) of an Si,j shock (i > j) with states U± and a speed s. Linearizing equation
(2.3) near the solution U(ζ) yields

V̇ = B(U(ζ), s)V, V (−∞) = V (+∞) = 0, V (ζ) ∈ Rn, (4.1)

where the matrix B(U, s) is given in (2.5). The corresponding adjoint linear system
takes the form

Ẇ = −BT (U(ζ), s)W, W (−∞) = W (+∞) = 0, W (ζ) ∈ Rn. (4.2)

Let us denote by W the linear space of solutions W (ζ) of system (4.2). For any
bounded function X(ζ) ∈ Rn, solutions W (ζ) ∈ W have the property

∫ +∞
−∞ W T (Ẋ −

B(U(ζ), s)X)dζ = 0.
The proof of the following proposition is given in the Appendix.

Proposition 1. For any real ζ and function W (ζ) ∈ W, the vector W (ζ) is orthog-
onal to both Mu(U−) and Ms(U+) at the point U(ζ) of the connecting orbit. In case
of quasi-transverse intersection of Mu(U−) and Ms(U+), we have dimW = i− j.

Consider a Poincaré hyperplane P orthogonal to the viscous profile at a fixed point
UP = U(ζP ), see Figure 4.1. Under perturbations U−+∆U−, U+ +∆U+, and s+∆s
satisfying the Rankine-Hugoniot conditions (3.1), the stable and unstable manifolds
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Figure 4.1: Perturbation of stable and unstable manifolds near a viscous profile.

Mu(U− + ∆U−) and Ms(U+ + ∆U+) change. Assuming that the perturbations are
small, we can uniquely define the points UP

− ∈Mu(U− + ∆U−) and UP
+ ∈Ms(U+ +

∆U+) such that UP
± ∈ P and the vector UP

+ − UP
− is orthogonal to both Mu(U−)

and Ms(U+) at UP . The vector UP
+ − UP

− is a measure of the separation between
the perturbed manifolds Mu(U− + ∆U−) and Ms(U+ + ∆U+). One can see that the
manifolds Mu(U− + ∆U−) and Ms(U+ + ∆U+) intersect, i.e., there is a connecting
orbit between U− + ∆U− and U+ + ∆U+ if and only if UP

+ = UP
− , see Figure 4.1.

Let us choose a basis W1(ζ), . . . , Wi−j(ζ) of W . Then, we can introduce the
function Hadd(U−, U+, s) with values in Ri−j as

Hadd(U−, U+, s) =
(
W T

1 (ζP )(UP
+ − UP

− ), . . . , W T
i−j(ζ

P )(UP
+ − UP

− )
)

= Ŵ T (ζP )(UP
+ − UP

− ),
(4.3)

where
Ŵ (ζ) = [W1(ζ), . . . , Wi−j(ζ)] (4.4)

is an n× (i− j) matrix. Indeed, since the vectors W1(ζ
P ), . . . , Wi−j(ζ

P ) are linearly
independent and orthogonal to bothMu(U−) andMs(U+) at UP (see Proposition 1),
the condition UP

+ = UP
− is equivalent to Hadd(U−, U+, s) = 0.

The local form of the surface Si,j found by linearizing the defining equations near
a point (U−, U+, s) ∈ Si,j is described as follows (see the proof in the Appendix).

Theorem 1. The tangent plane (∆U−, ∆U+, ∆s) of the manifold Si,j at the point
(U−, U+, s) ∈ Si,j is given by the equations ∆H = 0, ∆Hadd = 0, where

∆H =

(
∂F

∂U
− s

∂G

∂U

)

U=U+

∆U+ −
(

∂F

∂U
− s

∂G

∂U

)

U=U−

∆U− − (G+ −G−)∆s, (4.5)

∆Hadd =

(∫ +∞

−∞
Ŵ T D−1

U

(
∂F

∂U
− s

∂G

∂U

)

U=U−

dζ

)
∆U−

+

(∫ +∞

−∞
Ŵ T D−1

U (GU −G−)dζ

)
∆s

(4.6)
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are the linear parts of the functions H and Hadd evaluated at (U−, U+, s) and written in
terms of deviations (∆U−, ∆U+, ∆s). Here we introduced the short notations DU(ζ) =
D(U(ζ)), FU(ζ) = F (U(ζ)), GU(ζ) = G(U(ζ)), F± = F (U±), and G± = G(U±),
where U(ζ) is the viscous profile of the Si,j shock at the initial point (U−, U+, s).

It is remarkable that expression (4.6) does not depend on the choice of the
point UP = U(ζP ) (the position of the plane P) in the definition of the function
Hadd(U−, U+, s), just as in the case of Melnikov integrals for systems of planar differ-
ential equations [2].

As a model of a physical system, equation (2.1) typically depends on one or
more problem parameters. Under variations of these parameters, the functions G(U),
F (U), and D(U) undergo perturbations ∆G(U), ∆F (U), and ∆D(U). If these per-
turbations are small, the manifold Si,j undergoes a small perturbation. The first
order approximation of the perturbed manifold can be determined as follows (see the
proof in the Appendix).

Theorem 2. Let (U−, U+, s) ∈ Si,j and consider perturbations ∆G(U), ∆F (U),
∆D(U) of the system functions. Then the first order approximation of the perturbed
manifold Si,j near the point (U−, U+, s) is given by the equations

∆H = −∆F+ + ∆F− + s(∆G+ −∆G−), (4.7)

∆Hadd = −
∫ +∞

−∞
Ŵ T D−1

U ∆DU D−1
U

(
FU − F− − s(GU −G−)

)
dζ

+

∫ +∞

−∞
Ŵ T D−1

U

(
∆FU −∆F− − s(∆GU −∆G−)

)
dζ,

(4.8)

where ∆H and ∆Hadd are given by expressions (4.5) and (4.6).

Theorems 1 and 2 determine all nearby Si,j shock waves, even when problem
parameters are changed, using the information on a particular shock and its vis-
cous profile. This method is useful for constructing solutions of conservation laws
possessing Si,j shocks, continuation procedures, and parametric analysis.

The characteristic shock waves S−i,j, S+
i,j, and S±i,j are studied in the same way. In

addition to equations (3.1) and (3.2), (4.3), one should impose conditions ensuring
that the shock speed is equal to the corresponding characteristic speed at one or both
sides of the shock. This adds one or two equations in Theorems 1 and 2 found by
linearizing the equations s = λ(U−) and s = λ(U+).

5 Dual-family shocks in Riemann solutions

The basic initial-value problem for a system of conservation laws (2.2) is the Rie-
mann problem, given by piecewise constant initial data with a single jump at x = 0:
U(x, 0) = UL for x < 0 and U(x, 0) = UR for x > 0. The solution is found in
scale-invariant form U(x, t) = Û(ξ), ξ = x/t, consisting of continuously changing
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waves (rarefaction waves), jump discontinuities (shock waves), and separating con-
stant states. Classically, there are n families of rarefaction waves, one for each char-
acteristic speed, which we denote by Ri, i = 1, . . . , n. We require all the shock waves
to have a viscous profile, i.e., there can be Si,j, S−i,j, S+

i,j, and S±i,j shocks.
The structure of a Riemann solution is given by a sequence of waves wk

w1, w2, . . . , wm, (5.1)

appearing with increasing value of ξ. Here each wave wk ∈ {Ri, Si,j, S−i,j, S
+
i,j, S

±
i,j} is

a rarefaction or shock. The wave wk has left and right states U(k)− and U(k)+ and
speeds ξ(k)− < ξ(k)+ for a rarefaction wave and s(k) = ξ(k)− = ξ(k)+ for a shock wave.
The left state of the first wave w1 and the right state of the last wave wm are the
initial conditions of Riemann problem: U(1)− = UL and U(m)+ = UR. The natural
requirements in sequence (5.1) are

U(k)+ = U(k+1)−, ξ(k)+ ≤ ξ(k+1)−. (5.2)

Relations (5.2) imply that the right state of the wave wk coincides with the left state
of the wave wk+1, and the right speed of wk is lower or equal to the left speed of wk+1.
If ξ(k)+ < ξ(k+1)− then there is a separating constant state between wk and wk+1. In
this case we will use the notation wk — wk+1. If ξ(k)+ = ξ(k+1)− then the waves do
not possess a separating constant state. This situation will be denoted by wk |wk+1.

A classical Riemann solution consists of n classical wave groups separated by con-
stant states; each classical wave group consists of adjoining rarefactions Ri and classi-
cal shocks Si,i (simply Si) of the same family. The classical structure R1 — R2 — S3

of a Riemann solution in a system of three conservation laws is shown in Figure 5.1(a)
using characteristic lines in the space-time plane (shock waves are presented by bold
lines and rarefaction waves are given by thin line fans).

Conditions (5.2) imply that each pair of subsequent waves wk, wk+1 in a general
Riemann solution has one of the following types

{Rj or S∗i,j} — {Ri′ or S∗i′,j′}, j < i′,

Ri | {S−i,j or S±i,j},
{S+

i,j or S±i,j} | Rj,

(5.3)

where S∗i,j stands for Si,j, S−i,j, S+
i,j, or S±i,j. The most important structures of a

Riemann solution are the generic ones: they do not change under perturbations of
initial conditions UL, UR, flux function, and viscosity matrix. Generic structures
are “full” in the sense that no wave can be added to a sequence without violating
conditions (5.3). For example, the sequence R1 — S3 is not generic since it can be
extended to R1 — S2 — S3. Only the shocks with i ≥ j may appear in generic
structures. Generically, overcompressive shocks (i < j) bifurcate to a set of waves
under perturbations with arbitrarily small amplitudes. Let us assume that all the
states of a Riemann solution belong to the region of strict hyperbolicity, where all the
characteristic speeds are distinct; viscous profiles of shock waves are not restricted to
this region, i.e., they may cross elliptic regions in state space. Then, we can describe
generic structures of a Riemann solution (for the case of two conservation laws the
following theorem was proved in [12]; for the complete proof see [9]).

10



( )b

t

x

0

( )c

t

x

0

t

x

0

R

( )a

1

R2

S3
R1 R1

R3

R3

S2

S3,2

S3,1
S2

S2

R3 -

Figure 5.1: Riemann solutions: (a) classical, (b) with S−3,2 shock, (c) with S3,1 shock.

Theorem 3. Let (5.1) be the generic structure of a Riemann solution. Then w1 ∈
{R1, S1, S+

1 }, wm ∈ {Rn, Sn, S−n }, and each pair wk, wk+1 has one of the types

{Rj or Si,j} — {Ri′ or Si′,j′}, i′ = j + 1, i ≥ j, i′ ≥ j′,

Ri | {S−i,j or S±i,j}, i ≥ j,

{S+
i,j or S±i,j} | Rj, i ≥ j.

(5.4)

As an example, we list two generic nonclassical Riemann solution structures:

R1 — S2 — R3 |S−3,2 — R3, (5.5)

R1 — S2 — S3,1 — S2 — R3. (5.6)

A distinctive feature of structures (5.5) and (5.6) is that the classical waves R3 and S2

appears twice. Riemann solutions with these structures are shown in Figure 5.1(b,c).
We see that Riemann solutions with dual-family shock waves violate the custom-

ary classical structure of sequences of n classical wave groups separated by con-
stant states with increasing family number from left to right. The shocks with
i > j +1 introduce a “jump back” capability in this sequence allowing classical waves
of (j + 1), . . . , (i− 1)-th characteristic families to appear repeatedly. Moreover, from
the theoretical point of view, there is no general bound on the number of separated
classical waves or of nonclassical shock waves in a Riemann solution for systems of
n > 2 conservation laws. The existence of several separated waves corresponding to
the same characteristic family is a property of Riemann solutions that was observed
only in [8].

We remark that the generic structures of Riemann solutions described above do
not include transitional rarefaction waves, see [4]. These waves are related to charac-
teristic speeds given by multiple eigenvalues. Therefore, transitional rarefactions do
not appear in strictly hyperbolic systems.

6 Dual-family shocks in multi-phase flows in po-

rous media

Let us consider one-dimensional horizontal flow of n + 1 immiscible fluid phases in
a porous medium. The fluids can be, for instance, a mixture of gas or CO2, water,
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light oil, and heavy (viscous) oil. We assume that the whole pore space is occupied
by the fluids; compressibility, thermal and gravitational effects are neglected. The
equations expressing conservation of mass of the i-th phase based on Darcy’s law of
force is (see e.g. [1])

∂

∂t
(φsi) +

∂

∂x
(vfi) =

∂

∂x

(
Kli

∑

j 6=i

fj
∂pij

∂x

)
, i = 1, . . . , n + 1, (6.1)

where the constants φ and K denote the porosity and absolute permeability of the
porous medium, and v is the total seepage velocity of the fluid. For phase i, si is the
saturation, fi is the fractional flow function, and li is the relative mobility, which can
be chosen as the quadratic Corey model (see [1]):

fi =
li
l
, li =

s2
i

µi

, l = l1 + · · ·+ ln+1, (6.2)

where µi is the viscosity of phase i; for simplicity, all irreducible phase saturations
were set to zero. The capillarity pressures pij = pi−pj between the phases i and j are
measured experimentally as functions of saturations; here pi and pj are the pressures
in phases i and j.

Since the fluids occupy the whole available space, the saturations satisfy

s1 + · · ·+ sn + sn+1 = 1. (6.3)

Similarly, f1 + · · ·+ fn + fn+1 = 1. As a consequence, any n saturations describe the
state of the fluid. Hence, any of the n + 1 equations in system (6.1) is redundant,
and the latter can be reduced to an n equation system in n saturations.

As the total seepage velocity v is given by boundary conditions, we assume that it
is a positive constant and we set t = (φL/v)t̃ and x = Lx̃, where L is the characteristic
length of the system. Dividing both sides by v/L, this change of variables removes
v and φ from the left-hand side of system (6.1). For simplicity of notation, we drop
the tildes below. Finally, choosing any n saturations as state variables (e.g. Ui = si,
i = 1, . . . , n), we arrive at the dimensionless system

∂U

∂t
+

∂F (U)

∂x
= ε

∂

∂x

(
D(U)

∂U

∂x

)
, U = (U1, . . . , Un)T . (6.4)

The components of the vector F (U) = (F1, . . . , Fn)T represent the fractional flow
functions

Fi(U) =
li
l
, li(Ui) = U2

i /µi, l(U) = l1 + · · ·+ ln + ln+1, (6.5)

where
Un+1 = 1− U1 − · · · − Un (6.6)

is the saturation of remaining (n + 1)-th phase, ε = K/L2, and D(U) is the di-
mensionless viscosity matrix with components dij(U) = (L/v)li

∑
k 6=i fk

∂pik

∂xj
. The

12
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Figure 6.1: State space for four-phase flows. The system restricted to the shaded
planes is reduced to a lower dimensional one.

dimensionless parameter ε is small for large characteristic lengths L, so that many
aspects of the asymptotic behaviour of solutions may be described by the system of
first order conservation laws obtained by taking ε = 0. For simplicity, we will use
dimensionless viscosities µ̃i = µi/(µ1 + · · · + µn + µn+1) in (6.5), so that, dropping
the tildes,

µ1 + · · ·+ µn + µn+1 = 1. (6.7)

The physical domain for the state vector U is given by the inequalities

U1 + · · ·+ Un ≤ 1, Ui ≥ 0, i = 1, . . . , n. (6.8)

This domain represents a simplex in state space with n + 1 vertices; each vertex
corresponds to single phase fluid with Ui = 1 (i = 1, . . . , n + 1); see Figure 6.1.

From (6.5), the n× n Jacobian matrix ∂F/∂U can be expressed in the form

∂F

∂U
=

1

l
diag

(
dl1
dU1

, . . . ,
dln
dUn

)

− 1

l2
(l1, . . . , ln)T

(
dl1
dU1

− dln+1

dUn+1

, . . . ,
dln
dUn

− dln+1

dUn+1

)
.

(6.9)

One can check that all the eigenvalues of matrix (6.9) are strictly positive inside the
physical domain (6.8), i.e., flows with positive speed v have only positive characteristic
speeds.

There is a so-called umbilic point Uumb, at which

dl1
dU1

= · · · = dln
dUn

=
dln+1

dUn+1

. (6.10)

This is the resonance state, where ∂F/∂U is a multiple of the identity matrix and,
thus, all the characteristic speeds (eigenvalues) λ merge to the same value 1

l
dli
dUi

. There
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are n+1 umbilic points at the boundary of the physical domain, which are the vertices
of the simplex (6.8). At each vertex, all the characteristic speeds merge to the value
zero.

One can check that for the flux functions (6.5) there is a unique umbilic point
Uumb = (µ1, . . . , µn)T , Un+1 = µn+1 in the interior of physical domain (6.8), at which
all the characteristic speeds equal 2. The umbilic point Uumb exists and is unique
for the more general case when the relative mobilities li(Ui) are arbitrary functions
of the corresponding phase saturations Ui with positive first and second derivatives
such that l1(0) = . . . = ln+1(0) = 0 and dl1/dU1(0) = . . . = dln+1/dUn+1(0) = 0.
Indeed, the vector (l1, . . . , ln) has positive components inside the physical domain.
Hence, the matrix (6.9) is a multiple of the identity matrix if and only if the vector(

dl1
dU1

− dln+1

dUn+1
, . . . , dln

dUn
− dln+1

dUn+1

)
= 0, which yields equations (6.10). Since dli/dUi are

strictly increasing functions of Ui vanishing at Ui = 0, the equations dl1/dU1 = · · · =
dln/dUn = α have a unique solution for α > 0, and U1(α), . . . , Un(α) are increasing
functions of α. The function dln+1/dUn+1, where Un+1(α) = 1−U1(α)− · · · −Un(α),
is a decreasing function of α. Additionally, we have dln+1/dUn+1 > 0 at α = 0
(Un+1 = 1), and dln+1/dUn+1 = 0 at α = α∗ > 0, where the value of α∗ is given by
the equation Un+1(α) = 0. Hence, there exists a unique αumb solving the equation
dln+1/dUn+1 = α such that 0 < αumb < α∗. This yields a unique umbilic point
Uumb = (U1(α

umb), . . . , Un(αumb))T , which lies inside the physical region.
In order to study dual-family shock waves, we artificially take the identity viscosity

matrix D(U) ≡ I. Our main motivation here is to show analytically the existence
of all types of Si,j shock waves with −n < i − j < n in the system. This existence
provides the evidence that any Si,j shock may appear in the system with a realistic
viscosity matrix D(U).

6.1 Reduced dimension systems

By setting one of the Ui = 0 in equation (6.4), we obtain a reduced system describing
n instead of n + 1 phase flows. This system “lives” on the face of the simplex; see
Figure 6.1, where the lightly shaded face I corresponds to U4 = 0. Of course, all
the results of this section hold for the reduced system. This reduction can be done
iteratively until we reach a scalar partial differential equation describing two-phase
flow. This system is restricted to one of the edges of the simplex. Notice that this
reduction is valid for any physical viscosity matrix D(U).

There are other subsystems of (6.4) with dimension n − 1. Let us consider the
simplex of codimension 1:

U =

(
µ1

µ1 + µ2

ρ,
µ2

µ1 + µ2

ρ, U3, . . . , Un

)T

; ρ+U3 + · · ·+Un ≤ 0; ρ, U3, . . . , Un ≥ 0.

(6.11)
For n = 3 this is the shaded plane II containing Uumb shown in Figure 6.1. One can
check that the first two equations of system (6.4), (6.5) restricted to plane (6.11) are
equivalent (in this case we consider D(U) ≡ I), and the system possesses two equal
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characteristic speeds

λ =
2ρ

(µ1 + µ2)l
. (6.12)

As a result, system (6.4) is reduced to the n − 1 dimensional system with state
vector (ρ, U3, . . . , Un)T and viscosities µ1 + µ2, µ3, . . . , µn. This system describes
the flow of phases U3, . . . , Un and the mixture of phases U1, U2 in the proportion
U1/U2 = µ1/µ2 that acts as a single phase. Analogous reductions can be done taking
any two saturations Ui and Uj instead of U1 and U2.

Repeating such a reduction several times, we can obtain systems of lower dimen-
sions. Each of these systems describes a multi-phase flow. Thus, all the results of
this section hold for any of the reduced systems. Notice that the reduced systems
“live” on lower dimensional simplices in the interior of physical state space (6.8).

Using reduction (6.11) n− 1 times, each time with two state variables, we arrive
at the system restricted to the line

Uρ =

(
µ1

µ
, . . . ,

µn

µ

)T

ρ, µ = µ1 + · · ·+ µn. (6.13)

Up to multiplication by the constant µi/µ, all n equations in system (6.4) are equiv-
alent to the scalar partial differential equation on the line (6.13):

∂ρ

∂t
+

∂F (ρ)

∂x
= ε

∂2ρ

∂x2
, (6.14)

where

F (ρ) =
ρ2

µl
, l(ρ) =

ρ2 − 2µρ + µ

µ(1− µ)
. (6.15)

One can check that equation (6.14) coincides with the viscous profile equation
taken for a scalar conservation law describing two-phase flow, where U = U1 = ρ,
U2 = 1− ρ, µ1 = µ, and µ2 = 1− µ.

According to (6.8), the physical interval for ρ is 0 ≤ ρ ≤ 1. The line (6.13)
contains the point Uumb at ρ = µ, as well as the vertex U = 0 at ρ = 0. At points
with 0 < ρ < µ or µ < ρ ≤ 1, there are n− 1 equal characteristic speeds

λ(ρ) =
2ρ

µl
. (6.16)

There is an (n − 1)-dimensional eigenspace of the matrix ∂F/∂U corresponding to
the multiple eigenvalue λ(ρ), which consists of the vectors r = (r1, . . . , rn)T such that
r1 + . . . + rn = 0. The remaining characteristic speed is equal to

λ̃(ρ) =
2ρ(1− ρ)

µ(1− µ)l2
, (6.17)

with corresponding eigenvector r̃ = (µ1, . . . , µn)T , which is parallel to the line (6.13).
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6.2 Sn,1 dual-family shock waves

In this subsection, we seek for solutions of the viscous profile equation (2.3) that have
the form (6.13). Here ρ(ζ) is a function of ζ such that ρ± = ρ(±∞) and U± = Uρ± .
Along the line (6.13), all n equations in system (2.3) are equivalent to the scalar
ordinary differential equation

ρ̇ =
ρ2

µl
− ρ2

−
µl−

− s(ρ− ρ−), l− = l(ρ−), (6.18)

which is the viscous profile equation for two-phase flow described by (6.14). Since
the right-hand side of (6.18) vanishes at ρ = ρ+, we find the shock speed

s =
ρ− + ρ+ − 2ρ−ρ+

µ(1− µ)l−l+
, l± = l(ρ±). (6.19)

Here expression (6.15) for l± was used. One can show that the ordinary differen-
tial equation (6.18) has a solution ρ(ζ) such that ρ(±∞) = ρ± provided that both
inequalities

(ρ+ − ρ−)(ρ2
− + 2ρ−ρ+ − 2ρ2

−ρ+ − µ) > 0,

(ρ+ − ρ−)(ρ2
+ + 2ρ−ρ+ − 2ρ−ρ2

+ − µ) > 0
(6.20)

hold. Conditions (6.20) are equivalent to the inequalities

λ̃+ < s < λ̃−, λ̃± = λ̃(ρ±), (6.21)

where λ̃ is the distinct characteristic speed (6.17).
Under the conditions (2.7) and (6.21), we see that the shock wave having the

viscous profile Uρ is of type Sn,1 exactly if

λ− < s < λ+, λ± = λ(ρ±), (6.22)

where λ(ρ) is the characteristic speed (6.16) with multiplicity n− 1. With the use of
(6.15) and (6.19), conditions (6.22) reduce to

µρ+ − µρ− + 2ρ−ρ+(µ− ρ+) > 0,

µρ+ − µρ− − 2ρ−ρ+(µ− ρ−) > 0.
(6.23)

Figure 6.2 shows the region corresponding to the values (ρ−, ρ+) satisfying in-
equalities (6.20) and (6.23) for 0 ≤ µ ≤ 1. The constants ρ− and ρ+ taken in this
region define left and right states and speeds of Sn,1 shocks by formulae (6.13) and
(6.19). One can see that Sn,1 shock waves exist in the system for any µ. If µ ≥ 1/2,
these shocks can be arbitrarily small, since the boundary of the region contains the
point ρ− = ρ+ = µ corresponding to the umbilic point. If µ < 1/2, the shock ampli-
tude ‖U+ − U−‖ is bounded away from zero. In all the cases we have ρ− < µ < ρ+,
which means that the viscous profile passes through the umbilic point.

Since the state variables U1, . . . , Un can be chosen as any n out of n+1 saturations
s1, . . . , sn+1, there are n other lines in state space similar to (6.13) containing the left
and right states of Sn,1 shocks.
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Figure 6.2: Values of (ρ−, ρ+) corresponding to Sn,1 shocks for different µ.

Characteristic shocks of types S−n,1, S+
n,1, and S±n,1 can be found, respectively,

when the first, second, or both inequalities (6.20) become equalities. These equalities
correspond to s = λ̃−, s = λ̃+, and s = λ̃− = λ̃+, respectively, where λ̃± are simple
characteristic speeds at different sides of the shock. It turns out that there are no
S+

n,1 and S±n,1 shocks with viscous profile (6.13). Parameters ρ− and ρ+ corresponding
to S−n,1 shocks belong to the front face of the boundary shown darker in Figure 6.2.

According to the results of Section 5, a total of n−1 classical waves may be present
at both sides of Sn,1 shock in a Riemann solution. Thus, there are Riemann solutions
with Sn,1 shocks for any initial conditions UL and UR taken in certain neighborhoods
of the left and right shock states U− and U+. An example of a structure of Riemann
solutions with S3,1 shocks was given in (5.6).

6.3 General Si,j dual-family shocks

By reducing system dimension, we can find other types of Si,j shocks. First, let us
consider the case when

U1 = · · · = Uk = 0, (6.24)

i.e., only the phases Uk+1, . . . , Un, Un+1 are present. Thus, (6.4) reduces to the system
for (n − k + 1)-phase flow. Assume that we found an Si,j shock with speed s in the
reduced system. In the full (n + 1)-phase system, this corresponds to a shock for
which the first k components of the viscous profile are zero. Due to (6.24), there are
k zero characteristic speeds at both sides of the shock. Thus, such a shock will be
an Si+k,j+k shock for the full system. The shock speed s is always positive, which
follows from the positivity of characteristic speeds.

In the previous subsection, we found Sn,1 shocks in a general (n+1)-phase system.
Hence, by using the described recursive relation, we find an Sn,k+1 dual-family shock
for any 0 ≤ k < n with the viscous profile

U(ζ) =

(
0, . . . , 0,

µk+1

µ
, . . . ,

µn

µ

)T

ρ(ζ), µ = µk+1 + · · ·+ µn. (6.25)
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Here (µk+1, . . . , µn)T ρ(ζ)/µ is the viscous profile of the Sn−k,1 shock found for the
reduced (n− k + 1)-phase system. These shocks lie on the boundary of the physical
domain (6.8), yet they determine certain points (U−, U+, s) on the shock surfaces
Sn,k+1. By using Theorem 1 in Section 4, we can find all nearby shock waves of the
same type. Some of them belong to the interior of the physical domain (6.8) and,
thus, they represent Sn,k+1 shocks intrinsic to (n + 1)-phase flow.

The second type of dimension reduction corresponds to the plane (6.11). As shown
above, in this plane the system reduces to an n − 1 dimensional system describing
n phase flows. There are two equal characteristic speeds (6.12) at each point of the
plane. Again, let us consider an Si,j shock with speed s in the reduced system. Then,
if λ− < s < λ+ for double characteristic speeds λ±, we get an Si+1,j shock in the full
(n + 1)-phase system. If λ+ < s < λ−, this shock becomes an Si,j+1 shock in the full
system. Finally, if s < λ± or s > λ±, we obtain Si,j and Si+1,j+1 shocks, respectively.
This reduction can be used repeatedly. For example, Sn,1 shocks previously described
are obtained by using n− 1 repeated reductions.

The described approach allows finding dual-family shocks Si,j for any 0 < i−j < n.
Note that by taking opposite signs in inequalities (6.21), (6.22) (equivalently, in
(6.20), (6.23)), we obtain overcompressive shocks S1,n. With these shocks, by using
the dimension reduction approach, we can locate overcompressive Si,j shocks for any
−n < i− j < 0. The same method can be used for finding particular viscous profiles
for these shocks (recall that overcompressive shocks possess an infinite number of
viscous profiles).

6.4 Sensitivity analysis and continuation method

Let us apply Theorems 1 and 2 for an Sn,1 shock with the viscous profile (6.13). For
this purpose, we fix some values of ρ− and ρ+, which determine uniquely U−, U+, s,

and the viscous profile U(ζ) =
(

µ1

µ
, . . . , µn

µ

)T

ρ(ζ). With the use of expression (6.9),

the matrix B(U(ζ), s) defined in (2.5) takes the form

B(U(ζ), s) =

(
2ρ(ζ)

µl(ρ(ζ))
− s

)
I +

2(µ− ρ(ζ))

µ(1− µ)

(
ρ(ζ)

µl(ρ(ζ))

)2

(µ1, . . . , µn)T (1, . . . , 1).

(6.26)
Then, the general solution W (ζ) of the adjoint linear system (4.2) is found as

W (ζ) =

(
w1

µ1

, . . . ,
wn

µn

)T

η(ζ), (6.27)

where w1, . . . , wn are arbitrary constants satisfying the condition w1 + · · ·+ wn = 0,
and the scalar function η(ζ) is determined by the equation

η̇ =

(
s− 2ρ(ζ)

µl(ρ(ζ))

)
η,

∫ +∞

−∞
η(ζ)dζ = 1. (6.28)

The latter equality in (6.28) is the normalization condition. The solution η(ζ) of
(6.28) exist due to relations (6.16) and (6.22). Taking n − 1 linearly independent
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solutions as columns of the n× (n− 1) matrix Ŵ (ζ), we obtain

Ŵ (ζ) = Ŵ0 η(ζ), Ŵ0 =




1/µ1 1/µ1 · · · 1/µ1

−1/µ2 0 · · · 0

0 −1/µ3 · · · 0
...

...
. . .

...

0 0 · · · −1/µn




. (6.29)

Using matrix (6.29) in Theorem 1, we find the differentials

∆H =

(
∂F

∂U
− sI

)

U=U+

∆U+ −
(

∂F

∂U
− sI

)

U=U−

∆U− − (U+ − U−)∆s, (6.30)

∆Hadd =

(
2ρ−
µl−

− s

)
Ŵ T

0 ∆U−. (6.31)

Condition ∆Hadd = 0 with expression (6.31) yields ∆U− =
(

µ1

µ
, . . . , µn

µ

)T

∆ρ−. Then

using (6.9) and (6.13) in (6.30), one can check that ∆U+ =
(

µ1

µ
, . . . , µn

µ

)T

∆ρ+ and

the expression for ∆s coincides with the linearization of (6.19). This shows that the
approximation of Sn,1 shock states and speeds obtained by Theorem 1 agrees with
the analytical results.

Now let us assume that the viscosity matrix D(U) ≡ I suffers a small variation
∆D(U), while the functions G(U) = U and F (U) remain unchanged. Then the
change of states and speeds of Sn,1 shocks can be found using Theorem 2 as

∆H = 0, (6.32)

∆Hadd = −
∫ +∞

−∞
Ŵ T

0 η ∆DU

(
µ1

µ
, . . . ,

µn

µ

)T (
ρ2

µl
− ρ2

−
µl−

− s(ρ− ρ−)

)
, (6.33)

where ∆DU = ∆D(U(ζ)). One can see that if ∆D(U) = γ(U)I, where γ(U) is a
scalar function, the right-hand side of (6.33) vanishes. Indeed, one can check analyt-
ically that the states and speeds of Sn,1 shocks remain unchanged for the viscosity
matrix D(U) = γ(U)I with an arbitrary positive function γ(U) (the only change is
in equation (6.18) whose left-hand side becomes γ(Uρ)ρ̇ ).

In general, the perturbation ∆D(U) of the viscosity matrix changes the param-
eters of Sn,1 shocks. Since the change of left and right states and speeds can be
found using Theorem 2, one can use the continuation method to find Sn,1 shocks in
a system with a particular nontrivial D(U). For this purpose, the matrix D(U) is
changed from I to the required value in a sequence of small steps; at each step the
viscous profile and the matrix Ŵ (ζ) have to be recomputed and used in Theorem 2
for finding approximation for the next step. A similar procedure can be applied to all
other types of Si,j shocks. We can expect to find Si,j shocks in the system, at least
for viscosity matrices D(U) close to γ(U)I with some function γ(U) and for small
perturbations of flux functions.
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We note that the umbilic points give rise to elliptic regions in state space un-
der a general perturbation the flux function F (U). This happens, for instance, in
Stone’s model for three-phase flow through porous media [17]. Generically, the res-
onant points in a perturbed system, where all n characteristic merge, will have one-
dimensional eigenspace (one eigenvector) unlike the umbilic point Uumb, which has
n eigenvectors. At the same time, all Si,j shocks persist in the system. Hence Si,j

shocks are not necessarily related to the existence of umbilic points.

6.5 Physical applications

In many physical applications of system (6.1), the goal is to study the possibility of
recovering one phase of the fluid (e.g. oil) on the right side by injecting different fluid
phases (e.g. water and steam) on the left. The variety of Si,j shocks that can appear
in the system has to be taken into account in analysis of physical behavior, e.g., when
predicting oil recovery in petroleum engineering practice.

By adopting the method of [7], one should be able to show stability of Si,j dual-
family shocks with i > j as solutions of equation (2.1), at least for shocks of small
amplitudes. We expect that this is true also in case of perturbed flux functions and
viscosity matrices.

7 Conclusion

We studied a general class of shock waves satisfying the viscous profile admissibility
criterion in general systems of n conservation laws. Roughly speaking, shock waves
are classified by comparing their speeds with characteristic speeds at opposite sides of
the wave. As a result, we are led to consider dual-family shocks Si,j associated with
characteristic families i and j at the left and right sides, respectively. We develop
a constructive method for analytical and numerical study of such shocks and their
perturbations under change of problem parameters. One remarkable feature of Si,j

shocks with i > j is that their left and right states and speeds depend on the viscosity
matrix. The other is that these shocks dramatically enlarge the possible structures
of generic Riemann problem solutions. In Riemann solutions with such shock waves,
classical wave groups of the same characteristic family can appear repeatedly from dif-
ferent sides of dual-family shocks, separated by constant states. Thus, classical wave
groups in solutions with dual-family shocks does not necessarily follow in increasing
family number. As a wide variety of Si,j shocks is found in systems describing multi-
phase flows through porous media, there is a promising perspective for analyzing and
using these shocks in physical applications.
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8 Appendix

8.1 Proof of Proposition 1

Let us define the linear spaces V− and V+ of solutions V (ζ) ∈ Rn of the system

V̇ = B(U(ζ), s)V, (8.1)

vanishing as ζ → −∞ and ζ → +∞, respectively. Similarly, we define the linear
spaces W− and W+ of solutions W (ζ) ∈ Rn of the system

Ẇ = −BT (U(ζ), s)W, (8.2)

vanishing as ζ → −∞ and ζ → +∞, respectively. Since the matrix B(U, s) has
the eigenvalues µi(U, s), i = 1, . . . , n, and the matrix −BT (U, s) has the eigenvalues
−µi(U, s), i = 1, . . . , n satisfying inequalities (2.6), we find dimV− = n − i + 1,
dimV+ = j, dimW− = i − 1, and dimW+ = n − j. The set W is the intersection
W = W− ∩W+.

Since systems (8.1) and (8.2) are adjoint, the linear space W− is the orthogonal
complement of V− at each value of ζ. Indeed, let V (ζ) ∈ V− and W (ζ) ∈ W−.
Integrating the product W T (ζ)B(U(ζ), s)V (ζ) in the interval −∞ < ζ ≤ ζ∗, we
obtain ∫ ζ∗

−∞
W T (ζ)B(U(ζ), s)V (ζ)dζ =

∫ ζ∗

−∞
W T (ζ)V̇ (ζ)dζ

= W T (ζ)V (ζ)
∣∣∣
ζ∗

−∞
−

∫ ζ∗

−∞
Ẇ T (ζ)V (ζ)dζ

= W T (ζ∗)V (ζ∗) +

∫ ζ∗

−∞
W T (ζ)B(U(ζ), s)V (ζ)dζ.

(8.3)

Here, the integration by parts, equations (8.1), (8.2), and the conditions V (−∞) =
W (−∞) = 0 were used. From (8.3), we obtain that

W T (ζ∗)V (ζ∗) = 0 (8.4)

for any real ζ∗.
Since the tangent space to the manifold Mu(U−) at U(ζ) is given by the vectors

V (ζ) ∈ V−, the vector W (ζ) ∈ W is orthogonal to Mu(U−) at U(ζ). Analogously,
we can prove that W (ζ) is orthogonal to Ms(U+) at U(ζ).

If the manifolds Mu(U−) and Ms(U+) intersect quasi-transversally, we have
dim(V− ∩ V+) = 1. Hence,

dimW = dim(W− ∩W+) = n− dim(V− ∪ V+)

= n− (
dimV− + dimV+ − dim(V− ∩ V+)

)
= i− j.

(8.5)
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8.2 Proof of Theorems 1 and 2

Equations (4.5) and (4.7) are obtained by varying the Rankine–Hugoniot condi-
tions (3.1).

Let U(ζ) be a viscous profile of an Si,j shock with states U± and speed s. Let us
take perturbations of the left and right states U± + ∆U± and of the speed s + ∆s.
These perturbations are assumed to satisfy the Rankine-Hugoniot conditions. Then
we can write the variational equation for system (2.3) as

∆U̇ = B(U(ζ), s)∆U −D−1
U

(
∂F

∂U
− s

∂G

∂U

)

U=U−

∆U− −D−1
U (GU −G−)∆s. (8.6)

The perturbed solution U(ζ)+∆Uu(ζ) lying in the unstable manifold Mu(U−+∆U−)
satisfies the condition

∆Uu(−∞) = ∆U−. (8.7)

Pre-multiplying (8.6) by the transpose of the function W (ζ) ∈ W and integrating in
the interval −∞ < ζ ≤ ζ∗, we find

W T (ζ∗)∆Uu(ζ
∗) = −

(∫ ζ∗

−∞
W T D−1

U

(
∂F

∂U
− s

∂G

∂U

)

U=U−

dζ

)
∆U−

−
(∫ ζ∗

−∞
W T D−1

U (GU −G−)dζ

)
∆s.

(8.8)

Here, we used integration by parts with equations (8.2), (8.7) and the condition
W (−∞) = 0. Analogously, for the perturbed solution U(ζ) + ∆Us(ζ) lying in the
stable manifold Ms(U+ + ∆U+), i.e., ∆Us(+∞) = ∆U+, we obtain

W T (ζ∗)∆Us(ζ
∗) =

(∫ +∞

ζ∗
W T D−1

U

(
∂F

∂U
− s

∂G

∂U

)

U=U−

dζ

)
∆U−

+

(∫ +∞

ζ∗
W T D−1

U (GU −G−)dζ

)
∆s.

(8.9)

Subtracting (8.8) from (8.9), we get

W T (ζ∗)(UP
+ − UP

− ) = W T (ζ∗)(∆Us(ζ
∗)−∆Uu(ζ

∗))

=

(∫ +∞

−∞
W T D−1

U

(
∂F

∂U
− s

∂G

∂U

)

U=U−

dζ

)
∆U−

+

(∫ +∞

−∞
W T D−1

U (GU −G−)dζ

)
∆s.

(8.10)

Using expression (8.10) in (4.3), we obtain formula (4.6).
Finally, formula (4.8) is derived in the same way from equation (8.6), where the

term −D−1
U ∆DU D−1

U

(
FU −F−− s(GU −G−)

)
+ D−1

U

(
∆FU −∆F−− s(∆GU −∆G−)

resulting from variations of the system functions is added to the right-hand side.
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