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A linear oscillatory system having multiple degrees of freedom with periodic coefficients is considered. The system involves three 
independent parameters: the frequency and amplitude of the periodic exitation and a parameter of the dissipative forces, the 
last two being assumed small. Instability of the trivial solution (parametric resonance) is investigated. For an arbitrary periodic 
exitation matrix and a positive-definite matrix of the dissipative forces, general expressions are obtained for the domains of 
fundamental and combination resonances. Two special cases of the periodic exitation matrix, frequently encountered in 
applications, are studied: a symmetric matrix, and a time-independent matrix multiplied by a scalar periodic function. It is proved 
that in the first case the system is subject only to fundamental and sum-type combination resonances; in the second caSe 
fundamental resonance and sum or difference type combination resonance may occur, depending on the sign of a certain constant. 
It is shown that in both cases the resonance domains in the first approximation are cones in three-dimensional parameter space. 
Examples considered are the problem of the dynamic stability of a two-dimensional bending mode of an elastic beam subject to 
periodic torques, and the problem of the stability of an elastic rod of variable cross-section compressed by a periodic longitudinal 
force. 0 2002 Elsevier Science Ltd. All rights resewed. 

The phenomenon of parametric resonance is observed in many physical systems. One of the essential 
factors that determine the onset of resonance is energy dissipation. In this paper it is assumed that the 
dissipative forces and the amplitude of the periodic exitation are small. The formulae derived for the 
combination resonance domains (cones in parameter space) contain two frequencies and two 
corresponding oscillatory modes of the unperturbed conservative system, corresponding to a 
resonance excitation frequency. In the fundamental resonance, only one frequency and mode of 
oscillation are needed. This enables us to treat parametric resonance as the mutual interaction of the 
oscillation frequencies (modes) of a conservative system subject to periodic exitation at a definite 
frequency. 

The relations obtained for the parametric resonance domains enable us to analyse the effect of 
increasing the frequencies of natural oscillations and resonance number on the instability domain. In 
particular, it is shown that as the resonance number increases the instability cone becomes narrower, 
while the cone axis is straightened. In the majority of publications on parametric resonance it is assumed 
that the value of the periodic matrix, averaged over a period, is zero. In this paper, this restriction is 
dropped. The existence of a non-zero average has a substantial effect on the resonance domain, making 
the axes of the instability cones deviate from the vertical. 

In the case of non-resonance excitation frequencies, small dissipative forces stabilize the system, i.e., 
they make it asymptotically stable. For given dissipative forces, the boundary of the parametric resonance 
domain in the first approximation is described by a hyperbola; we will find the minimum (critical) values 
of the amplitude of the periodic input at which resonance occurs, as well as the corresponding excitation 
frequencies. Formulae for resonance zones when the dissipation parameter tends to zero will also be 
derived, and the paradox of the destabilization of the system by infinitesimal dissipative forces will be 
discussed. 

Of previous studies, we should mention first of all the analysis of nearly Hamiltonian systems [l], as 
well as systems reduced to normal coordinates of a conservative system (which require a knowledge of 
the transition matrix) [2-51. The method for investigating parametric resonance domains proposed in 
this paper is based on an analysis of the behaviour of multipliers and an evaluation of the derivatives 
of the monodromy matrix with respect to the parameters [6,7]. A system with one degree of freedom 
and three independent parameters was considered in [8]. 
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1. FORMULATION OF THE PROBLEM 

Consider a linear oscillatory system with periodic coefficients 

MS; + yDj + (C + SB(C2t))y = 0 (1.1) 

where M, D and C are symmetric positive-definite m x m matrices of the masses, and the damping 
and potential forces, B(T) is the piecewise-continuous 27r-periodic matrix of parametric excitation; 
y = (vi,..., y,,Jr is the vector of generalized coordinates; and the dots denote differentiation with respect 
to time C. 

We will investigate the stability of the trivial solution y = 0 of system (1.1) as a function of the vector 
of three parameters p = (y, 6, Q), which describes the magnitude of the dissipative forces, the amplitude 
and frequency of periodic excitation, assuming that y and 16 1 are both small. This assumption 
corresponds to the stipulation that system (1.1) is close to an autonomous conservative system. The 
parameters y and Sz are subject to the natural restrictions y 2 0 and Q > 0. 

We will write (1.1) as a system of first-order equations 

ir = A(Qt)x (1.2) 

The matrixA(SZt), of order 2m x 2m, is a real periodic function with period T = 27clQ. The matriciant 
of system (1.2) is defined as a matrix X(t) of order 2m x 2m satisfying the following equation and initial 
conditions 

X = A(Rt)X, X(0) = I (1.3) 

where I is the identity matrix. The value of the matriciant at t = T is called the monodromy matrix 
F [l]: 

F=X(T) (1.4) 

By the theorem on the dependence of the solution of a differential equation on the parameters, the 
monodromy matrix is a smooth function of the parameter vector p. The eigenvalues (multipliers) p 
and eigenvectors w of the monodromy matrix are determined from the equation 

Fw=pw (1.5) 

System (1.2) is asymptotically stable if all the multipliers lie inside the unit circle 1 p 1 < 1 in the complex 
plane. If at least one multiplier lies outside the unit circle, the system is unstable [l]. 

If y = 6 = 0, system (1.1) is conservative: 

Mj;+Cy=O (1.6) 

Seeking a solution of Eq. (1.6) in the form y = u exp (iot), we arrive at the eigenvalue problem 

Cu = &MU, llTMll=l (l-7) 

where the second equality is the normalization condition. From these equations we determine real 
values: the natural frequencies o and modes of oscillation u. Let us assume that all the frequencies 
0, c wi < 02 < . . . c 0,) are different. Denote the corresponding eigenvectors by ui(i = l,..., m). 

Matriciant (1.3) and monodromy matrix (1.4) have the following form when y = 6 = 0 [l] 

X(r) = exp(A& FO = exp(AoT), 
(1.8) 

The eigenvalues of the matrix &, as well as the corresponding right and left eigenvectors w and v, are 
defined by the relations 
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Aow = hw, ?A0 = hvT, vTw = 1 w 

The last equality is the normalization condition. It follows from (1.7)-(1.9) that the eigenvalues of the 
matrix 4 are hj, Aj = kiOj(j, . . ., m). The right and left eigenvectors for hj = ‘Oj are 

(1.10) 

It is well known from matrix theory [l] that the multipliers of the matrix F0 = exp (AJ) are 

pj,pj =exp(fiwiT)=exp(fi2noilR), j=l,..., m (1.11) 

and moreover the eigenvectors of the matrices Fo and & are identical. Thus, the vectors wj and vi of 
(1.10) are the right and left eigenvectors corresponding to the multiplier pi of the monodromy matrix 
F,,. They satisfy the relations 

FOwj = pjwj, v;F,, = pjv;, v;wj = 1 (1.12) 

The complex-conjugate multipliers pj = exp (GoiT) correspond to the complex-conjugate eigenvectors 
%j and “j. 

Since all the multipliers ej of (1.11) lie on the unit circle 1 pI = 1, the stability of system (1.1) for 
non-zero y and 6 is determined by perturbations of all the multipliers p. In the case of the general 
position, all the pj are different. Multiple multipliers arise for critical va ues of the frequency, which i 
are 

R=2wj/k, j=l,..., m; k=1,2 ,... (1.13) 

Q=(ojfo,)lk, i,j=l,..., m; j>l; k=l,2,... (1.14) 

Case (1.13) and (1.14) are called respectively a fundamental (simple) resonance (FR) and a 
combination resonance (CR) [l] and correspond to the existence of double multipliers p = (-l)k and 
p = exp (iUjT), respectively. These multipliers are semi-simple, since they have two linearly independent 
eigenvectors Wj and Ej in case (1.13) and Wj and G, (or Wj and WI for the negative sign) in case (1.14). If 
the frequency Q is close to the critical value, the system may become unstable. The critical cases are 
therefore of particular interest. Multipliers of higher multiplicity arise only when there are rational 
relations among the quantities Wj f 01 (j, 1 = 1,. . . , m; j > I), where j # 1 in the case Oj - 01. These cases 
are not typical and will not be considered further, though they may be investigated in a similar way. 

2. THE BEHAVIOUR OF SIMPLE MULTIPLIERS 

Let us consider a simple multiplier pj = exp (iOjT0) (7’0 = 2n/S$,) corresponding to the monodromy 
matrix Fo, for y = 6 = 0 and some value Q = QO. Investigation of the multiplier pi = exp (-pWjTo) is 
similar. As we know, a simple multiplier of a smooth family of matrices F(p) is a smooth function of 
the parameter vector p. The derivative of the multiplier pj with respect to the parameterpk has the 
form [9] 

apj _ v? aF 
aPk 

-wj 
J ap, (2.1) 

where the first derivations of the monodromy matrix are defined by the following expression [6,7] 

aF -=FjoX-‘%dr+A(~O)F$ 
JP, 0 aPk k 

(2.2) 

Using formulae(l.8), (1.9), (1.12) and (2.2), we write (2.1) as 
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aPj To 
apl, = pj 

T aA 
ivj Gwjdt+iwj 2 (2.3) 

where we have used the following property: the matrix X = exp &) has an eigenvalue exp(iojt) to 
which the right and left eigenvectors Wj and v correspond. Substituting the explicit form of the matrix 
A = A(L?,t) from (1.2) and the vectors Wj an d vj from (1.10) into Eq. (2.3), we find the derivatives of 
the multiplier with respect to the components of the parameter vector p = (y, 6, i-2) at the point 
PO = (0, 0, Qo) 

aPi _ pjmfDuj 
--- 

i& _ iPj7tCfj’ 2iPFi aP. / _ 

au QO 
* 

a6 ojno ’ at-2 G 

@’ = Zl;; j;ljB(r)ujdr 
0 

Then in the neighbourhood of the point p. the multiplier pi(P) can be represented in the form 

aPj ap. aP. 
pj(P)=pj +-y+~S+~(“-nO)+o(llP-Po II)= 

ar 

dDu xc(Js 
-y+- O 6i- 

27tW~ 

a0 ojRO 
2(Q-Q& 
4 

+o(llp-PO II> 

(2.4) 

(2.5) 

These relations imply the following expression for the magnitude of the multiplier in the first 
approximation 

dDu 
Ipj(P)l=’ Q - J y + o(ll p - PO II) 

0 
(2.6) 

It follows from the assumption that the matrix D of dissipative forces is positive definite that the 
coefficient of y in (2.6) is negative. Consequently, the stability condition 1 p 1 < 1 in the first approximation 
is the inequality 

Y>O (2.7) 

Let us assume that y = 0 and consider the case when B(r) = BT(7) or B(zo + T) = B(T~ - z), where 
r. is a certain number. Then system (1.1) with y = 0 is Hamiltonian or reversible, respectively. In that 
case the characteristic polynomial of the monodromy matrix is reciprocal [ 11; that is, if p is a multiplier, 
then l/p is also a multiplier. Consequently, for y = 0 and small 16 1 and I Q - Q. 1, the simple multipliers 
remain on the unit circle. Hence the plane y = 0 is the boundary of the asymptotic stability domain in 
the neighbourhood of the point po. Thus, the introduction of small dissipative forces cases all the simple 
multipliers to move into the unit circle for small 16 I and I L.2 - &lo I. This means that small dissipative 
forces stabilize system (1.1) with a small amplitude of parametric excitation for non-critical values of 
the frequency Q. 

3. PARAMETRIC RESONANCE DOMAIN 

Instability may arise at frequencies Q close to the critical values (1.13) and (1.14). Under these conditions, 
double multipliers appear on the unit circle. Suppose the parametric excitation frequency Q = &, satisfies 
the relation 

wj + o/= kn, (3.1) 

at certain frequencies Oj and ol of the conservative system (1.6) and for some natural number k. Note 
that this condition includes the case of fundamental resonance (1.13) when j = I and the case of sum 
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combination resonance (1.14) when j > 1. The critical frequencies S& = (Wj - o/)/k corresponding to 
difference combination resonance will be considered below by analogy. 

Condition (3.1) means that the two multipliers are identical: 

pj = F, = eXp(iCOjT~), To = 2n/iZ, (3.2) 

For convenience, we will put p. = pi - PI. When j = 1 (fundamental resonance) we have p. = (-l)k, 
but when j > I (combination resonance) PO is a complex multiplier. In the second case there is also a 
double multiplier , but because of the symmetry of the multipliers about the real axis, it will suffice to 
consider the behaviour of one of them. The double multiplier p. is semi-simple, since it has two 
corresponding linearly independent eigenvectors Wj and iV/,, and also two corresponding left 
eigenvectors vj and Tl of the form (1.10). 

Perturbation of the parameters leads to bifurcation of the double multiplier p. corresponding to the 
point po = (0, 0, S&) into two simple multipliers. Considering the perturbation of parameters along a 
ray p = po + et5 (c 3 0) in the direction e, we can describe the bifurcation of a semi-simple multiplier 
by the expression 

p = po (1 + CLE + W) 

The two values of p are found from the quadratic equation [9] 

(3.3) 

VjYwj I - POP d-F W 
J 1 1 

STF,Wj S;F,W, -pop = ’ (3.4) 

F 
I 

= dF(po +ee) =E, +z,, +ge3 
de a ’ a6 an 

where the derivatives are evaluated at E = 0 and p = pw Equation (3.4) may be written in the 
form 

l.?+(x* +ix,)j.l+y, +iy2 =o (3.5) 

X, +ix, =-(VTF,wj +vfF,w,)/p~ 

y, + iy2 = (vTF,w~T:F,T, - V~F,i,V:F,Wj)lP~ (3.6) 

In view of (3.3), the inequality 1 p 1 < 1 becomes 

IpI=Ipo(l+~E+O(E))(=l+ERe~+O(E)<l 

Consequently, the stability condition in the first approximation reduces to the inequality 

Rep<0 

(3.7) 

(3.8) 

for both roots of the quadratic equation (3.5). Hence, using Routh-Hurwitz-type conditions for the 
second-order polynomial with complex coefficients (3.5) we have [l] 

XI > 0 (-qY, ++y2h, -Y; > 0 (3.9) 

We now substitute xi, x2, yl and yz from (3.6) into inequalities (3.9). Elementary reduction using the 
expressions for eigenvectors (l.lO), the derivatives of monodromy matrix (2.2) and relations (1.2) (1.8), 
(1.9), (1.12) and (3.1), yield the stability conditions (3.9) in the form 

"4[e:(.rlj+'lr)2(tlj~le:-5,e22+k2(e~+a+e21k)2)- 

-(524 +4rlj -TIM3 +b+e2 lk)q)2 l/Q: >O 

where the coefficients Tlj, Q, cr, c2 and o+ are real numbers defined by the formulae 

(3.10) 
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(3.11) 

Note that the constants 5 and Q are positive, because of the assumption that the ma&D of dissipative 
forces is positive-definite. Expressing the vector e in terms of the other quantities in the relation 
p = p. + eE, we obtain 

e=(e,,e;!,e~)=(p-po)/E=(Y,6,~)/E, dR=R-no (3.12) 

Substituting these expressions into (3.10) and cancelling out positive factors in the resulting 
inequalities, we obtain relations which determine the stability domain in the first approximation: 

Y>O* Y’(llj +rl[)2[lJjTl,Y2-c162 +k2(AQ+0+6/k)2]- 

-(5262+k(rlj-~,)(~+cr+6/k)Y]2 >O (3.13) 

The first condition (3.13) means that dissipative forces are present. The second condition defines 
the form of the stability domain in the space of the three parameters p = (y, 6, S2). 

Finally, let us consider a critical frequency Qo, which satisfies the condition 

Wj-Cll[=kC&* i>l (3.14) 

for some natural number k (a difference combination resonance). Here there is a double multiplier 
p. = pj = pl to which two linearly independent eigenvectors wj and WI (1.10) correspond. Reasoning by 
analogy and replacing wI by -oI in all the relations, we determine the stability domain in the 
neighbourhood of the point p. = (0,O iSo) in the first approximation 

y > 0, Y2(rlj +n,)21rljrl,Y2 +5r62 +k2(AQ+o_8/k)2J- 

-15282 -k(qj -~,)(A12+0_6/k)Y]2 > 0 (3.15) 

where the real coefficients nj, Q, c,, c2 and CL are defined by relations (3.11). 
We will analyse the geometry of the instability domains (of parametric resonance) in the following 

most frequently encountered cases. 
1. Suppose the parametric excitation matrix B(a) is symmetric. Then the quantities c!; and c$ are 

complex conjugates. Consequently, 52 = 0, while the quantity c1 in (3.11) has the form 

(3.16) 

In the case of fundamental resonance (3.1) the second stability condition (3.13) leads, after 
cancellation of a positive factor, to an inequality which defines the parametric resonance domain (PRD) 
in the first approximation: 

qjrJ,Y2 -5,62 +4k2rljrl,(~j +~1)-2(d(2+<5+61k)2 4 0 (3.17) 

Since the quantities Tlj and ql are positive while 51 is non-negative, it follows that, if 51 f 0, then 
condition (3.17) defines the interior of a cone in the three-dimensional parameter space p = (y, 6,!2) 
(Fig. 1). The cone axis, which is formed by the centres of sections of the cone by planes 8 = cons& is 
defined by the equations 

Y = 0, R-R,+~+6/k=O (3.18) 
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Fig. 1 

In the case of parametric excitation with zero mean I$ = &$ = 0, we have u+ = 0, and consequently 
the cone axis is parallel to the 06 axis. The stability domain is the exterior of the cone. 

If the number k defining the order of the resonance (3.1) is increased, with e.+ and o1 remaining fixed, 
the coefficient E,i decreases as the square of the absolute value of the coefficient of the Fourier series. 
As a result, the instability cone narrows rapidly as k increases, while the cone axis (3.18) straightens 
out. A section of the cone by a plane 6 = const (for fixed amplitude of parametric excitation) is an 
ellipse which, ask increases, flattens out in the direction of the OSZ axis (Fig. 2). This is due to the presence 
of the factor P in (3.17). Since the denominator in (3.11) contains the frequency product a,+, it follows 
that as j and I increase, the quantities E,i and 1 o+ 1 typically decrease. As a result, the instability cone 
becomes narrower, while its axis straightens out as j and 1 are increased, that is, at resonances at higher 
frequencies. 

If the periodic matrix function B(T) has a finite number of terms in its Fourier expansion, the coefficient 
E,i will vanish beginning from some k. This means that in the first approximation the PRD (3.17) 
degenerates into a straight line (3.18). To analyse the form of PRD in this case, higher-order 
approximations must be considered. This type of degeneration is familiar from Mathieu’s equation, 
where the boundary of the PRD has cusps of different orders [lo]. It follows from the results obtained 
that such degeneration occurs in three-dimensional parameter space if there are dissipative forces (there 
is no PRD, or the PRD forms narrow wedges with tangent rays (3.18) when 6 > 0 and 6 < 0). 

In the case of difference combination resonance (3.14) stability condition (3.15) yields the PRD as 
an inequality: 

lJjq,y* +5j6* +4k2?ljTJ,(Tlj +?J,)-*(A!2+6_6/k)* d 0 (3.19) 

Note that inequalities (3.17) and (3.19) differ only in the sign of the second term and the coefficients 
ok. Therefore, if E,i f 0 (the non-degenerate case), only one of these inequalities defines a cone, while 
the other defines a point y = 6 = AL2 = 0 (no resonance). Consequently, if ci is positive, there is no 
domain of difference combination resonance. Note that in Hamiltonian systems (without dissipation) 
the absence of difference combination resonance was known previously [ 11. 

2. Suppose the parametric excitation matrix has the form 

B(W = cp(Qr)Be (3.20) 

where B. is an arbitrary matrix, independent of time, and q(t) is a 2n-periodic scalar function. Here 
the product &c$’ in (3.11) is a real number. Consequently, c2 = 0 and the coefficient & is 

:M. 
Q, - o+W 

Fig. 2 
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(3.21) 

The second stability condition (3.13) in the case of fundamental resonance and sum combination 
resonance (3.1) yields the PRD (3.17). In the case of difference combination resonance (3.14) the PRD 
has the form of (3.19). In the non-degenerate case 51 # 0, the sign of 51 is like that of cjl. In the case 
of fundamental resonance c.. 2 0, so that, provided that cjj # 0, a fundamental resonance domain exists, 
described by the cone (3.14. As to the existence of combination resonance domains, this depends on 
the sign of ~~1. If cil > 0, only a domain of sum combination resonance exists, while if cj/ < 0, only a 
domain of difference combination resonance exists. The form of the PRD (a cone) depends on the 
order k of the resonance and the frequencies O;‘i and wI, as in the previously described case 1”. If 
cjl = 0, the resonance domain either does not extst or is degenerate (the first approximation yields a 
straight line). 

Our results may by formulated as follows. 

Theorem 1. If the exitation matrix is symmetric, B(z) = Br(r), then system (1.1) is subject only to 
fundamental resonances (1.13) and sum combination resonances of type (1.14). In the case of the matrix 
B(T) = cp(z)Bo, where (p(r) is a periodic scalar function and Bo is a time-independent matrix, one obtains 
fundamental resonances (1.13) and, depending on the sign of the constant cri in (3.21), either sum 
combination resonances (cjl > 0) or difference combination resonances (cj/ < 0). In the three-dimensional 
space of the parameters y, 6 and Q, the domains of fundamental and sum combination resonance are 
described by the cones (3.17) and the domains of difference combination resonance are described by 
the cones (3.19). 

The cases 1 and 2 just considered correspond to the most widespread forms of parametric excitation. 
In other cases, on can use the stability conditions (3.13) and (3.15) to construct three-dimensional PRDs. 

4. THE INFLUENCE OF DISSIPATIVE FORCES ON THE 
PARAMETRIC RESONANCE DOMAIN 

Let us fix a value of the parameter y > 0 and consider the case in which’the condition 52 = 0 is satisfied, 
say case 1 or 2 of Section 3. Then the PRDs in the first approximation have the form of (3.17) and 
(3.19). Depending on the sign of &, the PRD is either non-existent or contained in the interior of 
hyperbolas (sections of the cone by a plane y = const) in the plane of the two parameters 6 and Q 
(Fig. 3). The asymptotes of the hyperbolas are defined by the equations 

15, II’: 6&2k(lJjr-&lJj +rJJ’(AQ+o$/k)=O 

where the subscript s denotes + for resonances (3.1) and - for resonances (3.14). 

(4.1) 

Fig. 3 
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Note that o+ = o_ = 0 in the case when the mean value of the matrix B(S2t) over a period is zero. 
Increasing the parameter y, which defines the magnitude of the dissipative forces, leads to a decrease 
in the PRD in the 6, Q plane. 

Using expressions (3.17) or (3.19), depending on the type of resonance, we find in the first 
approximation the minimum (critical) amplitude of excitation 16 1 at which parametric resonance can 
occur 

6*=+_Itljll,1511y2 Y 

The quantities 6, correspond to excitation frequencies 

(4.2) 

Q* =Q,--0,6,/k 

where Sz, is the resonance frequency (3.1) or (3.14) (Fig. 3). 

(4.3) 

Theorem 2. At small flxed values of the dissipation parameter y > 0, when E,z = 0, the boundary of 
the parametric resonance domain is described in the first approximation by a hyperbola (3.17), corres- 
ponding to fundamental and sum combination resonances (ci > 0), or a hyperbola (3.19), correspond- 
ing to difference combination resonance (& < 0). The minimum (critical) values of the excitation 
amplitude and corresponding frequencies are defined by (4.2) and (4.3). 

Using relation (3.17) and (3.19), let ut investigate the limit of the PRD as y -+ + 0, that is, in the case 
of infinitesimal dissipation. In the first approximation, for the case of fundamental resonance (3.1) 
(j = I), the domain has the form 

E$j* > k*(AQ+o+6/k)* (4.4) 

In the case of sum combination resonance (3.1)(s = +) or difference combination resonance (3.14) 
(s = -), the domain is defined by the relation 

~5,6* > 4k2rlj’l,(‘lj +rll)-*(~+(J,6!k)* (4.5) 

The combination resonance domain in the limit, as y + + 0 obviously depends on the ratio nj/Tll of the 
magnitudes of the dissipative forces associated with the j-th and I-th natural modes of the unperturbed 
system. If nj = nl, the combination resonance domain is minimal, while if rlj G nl or nj % nr it is maximal 
and consists of two vertical angles whose magnitudes tend to n: as nj/TJr + 0 or nj/nl + 00 (Fig. 4). 

Now assume that y = 0 and consider the case B(z) = B=(z) or B(z,, + T) = B(q, - T), when the 
characteristic polynomial of the monodromy matrix is reciprocal [l]. In that case the system is stable 
(not asymptotically) if and only if all the multipliers are semi-simple (the number of eigenvectors is 
equal to the algebraic multiplicity of the multiplier) and lie on the unit circle. Using relations (3.3) and 
(3.5), we find the stability condition for resonances (3.1) and (3.14) to be 

Reu=Oex, =0, y* = 0, x; +4y, >o (4.6) 

Substituting the values ofXt,Xz, yi andy2 from (3.6) and using relations (1.2), (1.8)-(1.12) and (2.2), as 
well as the assumption c2 = 0, we find the PRD in the first approximation: 

Fig. 4 
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&6* a k2(d(2+cs,6/k)* (4.7) 

where s = + for resonances (3.1) and s = - for resonances (3.14). 
It can be seen by comparing inequalities (4.4) and (4.7) that the stability domains for a system with 

infinitesimal dissipation (r + + 0) and a system without dissipation (y = 0) coincide in the case of 
fundamental resonances (3.1) (j = I). In the case of combination resonance, however, the domains (4.5) 
and (4.7) coincide only when rj = Q, being different if qj f Q, and moreover the combination resonance 
domain of a system with dissipation is always larger. If the mean value of the periodic matrix B(z) 
vanishes, we have o, = 0 and o_ = 0. In these cases formulae (4.4), (4.5) and (4.7) are the same as 
those obtained previously [l]. An increase in the combination resonance domain when infinitesimal 
dissipation is introduced has been observed in various mechanical systems [l, 3, 111. This effect is 
analogous to the well-known paradox of the destabilization of a non-conservative system by small 
dissipative forces in the case of autonomous systems [12]. 

5. A SYSTEM WITH ONE DEGREE OF FREEDOM 

In the case of one degree of freedom (m = l), system (1.1) may be written as Hill’s equation with 
damping 

j;+yj,+02(1 +&p(Rr))y=O (5.1) 

The presence of just one natural frequency w means that there is no combination resonance. There is 
fundamental resonances when Q0 = 2w/k (k = 1, 2, . . .), and the corresponding three-dimensional 
fundamental resonance domains (3.17) have the form 

Y2-- 
4 + Pk2 o262 +k’(AQ-yS)2 GO (5.2) 

where ok and pk are the Fourier coefficients of the function cp(z) of (3.21). For fixed small values of 
y > 0, the critical amplitudes and frequencies of excitation are, by formulae (4.2) and (4.3), 

(5.3) 

In the case when cp(z) = cos z (Mathieu’s equation with damping) and k = 1, formulae (5.2) and 
(5.3) are identical, after some reduction with the approximate formulae for the first fundamental 
resonances domain and critical amplitude presented in [3]. 

6. EXAMPLES 

Let us consider Bolotin’s problem [3,13] of the dynamic stability of the two-dimensional bending mode 
of an elastic beam (Fig. 5). It is assumed that the beam, of length 1, is freely supported at its ends and 
loaded in the plane of maximum stiffness by periodic torques M(a) = &p(sZt), where cp(z) is a 2n-periodic 
function. The flexural-torsional vibrations that ensue from that plane are described by the following 
equations [13] 

mli; + ymd, W + EJw”” + &q(~t)W’ = 0 

rnr28 + ymr2d2b + &p(Rt)w” - GIW’ = 0 

(6.1) 
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where w(x, t) is the transverse deflection of the beam, 0(x, t) is the angle of rotation of the cross-section, 
EJ and GI are the bending and torsion stiffnesses of the beam, respectively, m is the mass per unit length 
of the beam, r is its cross-sectional radius of inertia, y is the parameter of dissipative forces (viscous 
friction), dr and dz are fixed constants defining the magnitude of the friction forces associated with 
bending and torsion; dots denote differentiation with respect to time t, and primes denote 
differentiation with respect to the coordinate x. The boundary conditions are 

x=0,1: w=w”=fj=O 

A solution of system (6.1), (6.2) is sought in series form [3] 

(6.2) 

w(x,t)= g W,(t)siny, e(x,t) = CB,(r)sin 7 (6.3) 
II=1 VI 

where WJt) and G,(t) are unknown functions of time. Substituting these series into Eqs (6.1), we obtain 
a system of ordinary differential equations for W,,(t) and o,(t) of the form (1.1) with 

M = diag(l,l), D = diag(d, ,d,}, C = diag(o~,,e&) 

where wnl and 01,~ are the natural frequencies of flexural and torsional vibrations of the beam, 
respectively, whose eigenvectors are 

Let us investigate the stability of system (l.l), (6.4) for some fixed value of n. Since B(S&) = cp(S2t)Bo, 
where B. is fixed matrix, the system belongs to the type considered in Subsection 2 of Section 3. The 
quantities cil, computed from formula (3.21), are 

x4n4 
Cl I = c22 = 0, =->o ‘12 ,4r2m2 

Consequently, there are no domains of difference combination resonance, and the domains of 
fundamental resonance are degenerate (their analysis requires the computation of higher-order 
approximations). By inequality (3.17) the domains of sum combination resonances at frequencies close 
to 510 = (o,t + ~,~)/k (k = 1,2, . ..) have the form 

d,d,y= - c,z(a: +i3:)82 +a&2 W2 

4%Pn2 Cd, + d2 I= 
Ai2=<0 

where ak and pk are defined in (3.21). 
Numerical computations were carried out for the case 

n = I, q(z) = COST, d, = d2 = 1, o,,, = lc-‘, 6.1,~ =&-I 

12m=n2/41cglcm, r2 =41Jscm2 

(6.5) 

Figure 6 (the continuous curves) shows the boundary of the first combination resonance domain 
(k = 1) in the first approximation (6.5). The dashed curves show the boundary of the combination 
resonance domain obtained by numerical computation of the monodromy matrix at different values of 
the parameters y, 6 and Sz. Equations (1.3) were integrated using the Runge-Kutta method. Figure 6 
shows that there is good agreement between the exact (numerically determined) and approximate 
combination resonance domains, up to values of the amplitude 6 = 0.8. 
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2. As a second example, consider an elastic rod of length I of variable cross-section, loaded by a 
longitudinal periodic force P = PO + &p (Qt) where 6 and 51 are the amplitude and frequency of excitation 
and PO is a fixed value, less than the critical Euler force PE. The equation of small vibrations of the rod 
has the form [3] 

m(x)ti+ ys(x)W + [PO + &p(Rr)]w” + (EJ(X)W”)” = 0 (6.6) 

where W(X, t) is the deflection of the rod, EJ(x) is its stiffness, m(x) is the mass per unit length, S(X) is 
the thickness of the rod and y is the coefficient of viscous friction. The rod is elastically clamped at both 
ends with stiffnesses cl 2 0 and c2 3 0. 
Then the boundary conditions are 

w(0) = w(f) = 0 (-c,w’+ EJW”)x=O = (c*w’+ ziYW”),=, = 0 (6.7) 

The limiting cases cl = c2 = 0 and cl’ = cil = 0 correspond to hinged and clamped ends, respectively. 
A solution of system (6.6) (6.7) will be sought in series form 

w(-Gt)= f&(f)U,(X) 
tl=I 

(6.8) 

where W,(t) are unknown functions of time and U,(X) are the natural modes of vibration of a beam 
compressed by a constant force PO; the latter functions are determined from the eigenvalue problem 
(o,, are the vibration frequencies) 

(EJ(x)u~)” + P,u::- w,2m(x)u, = 0 (6.9) 

u,(O) = U,(f) = 0 (-c,u:, + E./U,“),,, = (C*Ui + EJUj&, = 0 (6.10) 

The eigenfunctions satisfy the orthonormality conditions 

j mUiUjdx = 6, (6.11) 
0 

where 6ii is the Kronecker delta 
Substituting series (6.8) into Eq. (6.6) and using Eq. (6.9), we obtain the equation 
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from which, multiplying by U(X) (j = 1, 2, . ..). integrating with respect to x from 0 to 1 and using 
integration by parts and conditions (6.10) and (6.11), we obtain a system of equations (1.1) in which 
the matrices M and C are diagonal, while D and B(Qt) are symmetric: 

M = II Sii II, C = II wf6, II, D=ll$ II, B=WWII$ II 

dij =~~~i~jdr. bii =-f~~~l~ (dij > 0, bJj <O) (6.12) 
0 0 

We will investigate the stability of the system at small 6 and y. By Theorem 1, only fundamental and 
sum combination resonances are possible. All the components of the eigenvector ui belonging to 
frequency Oi are zero, except for a one in the i-th position. The first approximation equation for the 
three-dimensional fundamental resonance domain (Q. = 2Oj/k) and combination resonance domain 
(!& = (Wj + 01)/k,j > I) (3.17) h ave the following form, taking relations (3.21) and (6.12) into account 

bjw + Pi djj4 
2 

d#,Y2 1 - a2 + 4k2 

(djj +d,112 

~ aO(~jb,, +w,b..) 
"6 so 4o ,. (6.13) 

J ’ 
4&o jo, 1 

The quantities ak and fik are defined in (3.21). The critical values of the amplitude (4.2) and frequency 
(4.3) for fixed small y > 0 are 

K 

” 
Q, =a,+ 

ao(wjb,, + O,bj) 

4kojo, 
6, (6.14) 

In the case of a uniform rod, clamped or hinged at its ends, with k = 1 and a longitudinal load 
P = 6 coslslt, formulae (6.13) and (6.14) are identical with those presented in [ll]. 
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