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Abstract. Linear multi-input dynamical systems smoothly depending on parameters are con-
sidered. A set of parameter values corresponding to uncontrollable systems (an uncontrollability set)
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1. Introduction. The concept of controllability is very important in the study
of control problems. It describes the possibility of transferring a system to a required
state using a given set of input (control) variables. Uncontrollability makes operation
of a system in the whole state space impossible and signals the fundamental trouble
with a control problem or underlying physical system. Similar difficulties appear for
nearly uncontrollable systems, which require big control resources for control per-
formance and which are strongly affected by imperfections and disturbances of the
system.

The well-developed control theory exists for linear dynamical systems [3, 13].
Nevertheless, there are essential problems in using classical controllability criteria for
numerical implementation. This is related to the structural instability of an uncon-
trollable system, which becomes controllable under an arbitrarily small perturbation.
In this respect, it is important to know how far our system is from the nearest un-
controllable one. This problem was studied by many authors; see [2, 10, 11, 12] and
references therein.

Design of a particular control system requires checking the controllability condi-
tion for different values of parameters. In this analysis, the knowledge on the structure
of the uncontrollability set (a set of parameter values corresponding to uncontrollable
systems) is very useful and helps in avoiding the dangerous nearness to uncontrollabil-
ity. In this paper, basic qualitative properties of the uncontrollability set for a generic
(typical) multi-input linear dynamical system depending on several parameters are
investigated. This includes a description of a regular part of the uncontrollability
set and its basic singularities. Then the quantitative perturbation method for local
analysis of the uncontrollability set near its regular points is developed. Application
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of this method to numerical calculation of a regular part of the uncontrollability set
in the parameter space is proposed. As an example, an elastic mechanical system con-
trolled by a force and dependent on three design parameters is studied. The results
of the paper are based on the versal deformation theory for matrix pairs under state
feedback equivalence [6, 8, 14].

The paper is organized as follows. Section 2 describes basic concepts and results
of the mathematical control theory. Section 3 studies the qualitative structure of
the uncontrollability set. Quantitative perturbation method for local analysis of the
uncontrollability set is developed in section 4. In section 5, a numerical method for
computation of a regular part of the uncontrollability set is constructed and applied
to the analysis of a specific mechanical system. Section 6 is devoted to singularities
of the uncontrollability set. The conclusion summarizes the contribution.

2. Controllability, feedback equivalence, and versal deformation. Let us
consider a dynamical system described by the system of linear ordinary differential
equations

ẋ(t) = Ax(t) + Bu(t),(2.1)

where x ∈ R
n is a state vector, u ∈ R

m is an input vector, and A and B are n × n
and n ×m real time-invariant matrices, respectively; the dot denotes differentiation
with respect to time t. System (2.1) is called (state) controllable if it is possible to
construct a control signal u(t) that will transfer an initial state to any final state in
finite time [3, 13]. Otherwise, the system is said to be uncontrollable. The classical
criterion of controllability says that the system is controllable if and only if the n×nm
controllability matrix C = [B,AB, . . . ,An−1B] has full rank [3, 13]

rank [B,AB, . . . ,An−1B] = n.(2.2)

System (2.1) is determined by a matrix pair (A,B). Let us denote the set of
all matrix pairs by M = {(A,B) | A ∈ R

n×n,B ∈ R
n×m}. We will use the short

notation α = (A,B) for a matrix pair. The matrix pair α is called controllable (or
uncontrollable) if the corresponding system (2.1) is controllable (or uncontrollable).

2.1. Feedback equivalence. Let us apply a linear feedback transformation of
the input vector and perform a change of basis in the state and input spaces. The
new state vector x̄ and input vector ū are related to x and u by the expressions

x = Px̄, u = Qū + Rx̄,(2.3)

where P and Q are n × n and m ×m nonsingular real matrices; R is an m × n real
matrix. The substitution of (2.3) into (2.1) yields

˙̄x(t) = Āx̄(t) + B̄ū(t),(2.4)

where

Ā = P−1(AP + BR), B̄ = P−1BQ.(2.5)

Systems (2.1) and (2.4) (as well as the corresponding matrix pairs α = (A,B) and
ᾱ = (Ā, B̄)) are called feedback equivalent (also called block equivalent) [9, 13]. The
controllability property is invariant under the feedback equivalence transformation.
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Let us introduce the short notation ᾱ = γ ◦ α for the feedback equivalence
transformation (2.5) applied to a matrix pair α = (A,B), where γ denotes a triple
γ = (P,Q,R). We denote the set of all feedback equivalence transformations by
G = {(P,Q,R) | P ∈ R

n×n, Q ∈ R
m×m, R ∈ R

m×n, detP 	= 0, detQ 	= 0}. Note
that relations (2.5) determine the Lie group structure in G with the multiplication
and inversion of elements given by

γ1γ2 = (P1P2, Q1Q2, R1P2 + Q1R2) ∈ G, γi = (Pi,Qi,Ri) ∈ G,
γ−1 = (P−1, Q−1, −Q−1RP−1) ∈ G, γ = (P,Q,R) ∈ G

(2.6)

such that γ1γ2 ◦α = γ2 ◦ (γ1 ◦α) and γγ−1 ◦α = α for any α ∈ M. The unit element
of G is e = (In, Im, 0), where In and Im are n × n and m × m identity matrices,
respectively. This triple has the property α = e ◦ α for any pair α ∈ M.

2.2. Equivalence classes and their local structure. Let us consider a fixed
matrix pair α0 = (A0,B0) ∈ M. A set of all pairs α feedback equivalent to α0 is
called the orbit of α0 and denoted by

O(α0) = {α ∈ M | α = γ ◦ α0, γ ∈ G}.(2.7)

The orbit is a smooth submanifold of M.
The orbit O(α0) can be represented by its arbitrary member α ∈ O(α0). There-

fore, to describe the orbit it is convenient to choose a pair α having, in some sense,
the simplest form. One such form, called a Brunovsky canonical form, is represented
by the matrix pair [9, 13]

αb = (Ab,Bb), Ab =

(
N 0
0 J

)
, Bb =

(
E 0
0 0

)
,(2.8)

where J is the real Jordan canonical form (real counterpart of the Jordan form);
N = diag (N1, . . . ,Nr); E = diag (E1, . . . ,Er); Ni and Ei are ki × ki and ki × 1
matrices, respectively, having the form

Ni =


0 1

0
. . .

. . . 1
0

 , Ei =


0
...
0
1

 .(2.9)

The numbers k1 ≥ · · · ≥ kr > 0 are called controllability indices or Kronecker indices
of the system; N is called a Kronecker part and J is called a Jordan part of the
Brunovsky form. Any matrix pair α ∈ M is feedback equivalent to the corresponding
Brunovsky form, which is unique up to the permutation of blocks in the Jordan matrix
J. Using condition (2.2), one can check that the matrix pair α is controllable if and
only if its Brunovsky form has no Jordan part. If the pair is uncontrollable, then
eigenvalues of the Jordan part J are called generalized eigenvalues or uncontrollable
modes.

Let us introduce the function fα0
(γ) = γ ◦ α0, which is a smooth function from

G to M. Then the orbit O(α0) can be seen as the range of the mapping fα0 , i.e.,

O(α0) = Imfα0
.(2.10)
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Let us denote by TeG the tangent space to G at the unit element e. Since G is an
open set, we have TeG = {(U,V,W) | U ∈ R

n×n, V ∈ R
m×m, W ∈ R

m×n}. The
linear spaces M and TeG are equipped with the Euclidean scalar products

〈α1, α2〉1 = trace (A1A
T
2 ) + trace (B1B

T
2 ),

〈ξ1, ξ2〉2 = trace (U1U
T
2 ) + trace (V1V

T
2 ) + trace (W1W

T
2 ),

(2.11)

where αi = (Ai,Bi) ∈ M, ξi = (Ui,Vi,Wi) ∈ TeG, and AT denotes the transposed
matrix. Let us introduce linear mappings dfα0

: TeG −→ M and df∗
α0

: M −→ TeG
as follows:

dfα0(ξ) = (A0U−UA0 + B0W, B0V −UB0), ξ = (U,V,W),

df∗
α0

(α) = (AT
0 A−AAT

0 −BBT
0 , B

T
0 B, B

T
0 A), α = (A,B).

(2.12)

It is straightforward to check that dfα0
is the differential of the function fα0

at the unit
element e = (In, Im, 0) [6], and df∗

α0
is the adjoint function defined by the relation [7]

〈dfα0(ξ), α〉1 = 〈ξ, df∗
α0

(α)〉2, α ∈ M, ξ ∈ TeG.(2.13)

A local structure of the orbit O(α0) near the point α0 is determined by the range of
the mapping dfα0

and null-space of df∗
α0

as follows [8]:

Tα0O(α0) = Im dfα0
,(2.14)

(Tα0O(α0))⊥ = Ker df∗
α0
,(2.15)

where Tα0
O(α0) is the tangent space to O(α0) at the point α0; (Tα0

O(α0))⊥ denotes
the normal complimentary subspace to Tα0

O(α0) in M. In addition, we denote by
(Tα0O(α0))c an arbitrary complimentary subspace to Tα0O(α0) in M.

2.3. Versal deformation. A multiparameter dynamical system (2.1) is de-
scribed by a matrix pair α(p) smoothly dependent on a vector of parameters p =
(p1, . . . , pk) ∈ R

k. The function α(p) is called the family of matrix pairs. The family
α(p) determined in the neighborhood of a point p0 is called a deformation of the
matrix pair α0 = α(p0). Using feedback equivalence transformation γ(p) ◦ α(p), the
family α(p) can be reduced to a more simple form. Nevertheless, a reduction to the
Brunovsky form generally cannot be achieved by the feedback equivalence transforma-
tion γ(p) smoothly dependent on parameters. The following theorem proved in [6, 8]
provides another form called a versal deformation that can be used for multiparameter
families of matrix pairs. Note that the concept of versal deformation was first intro-
duced by Arnold [1] for families of square complex matrices; see also [14] for the
generalization to the case of a Lie group acting on a complex manifold.

Theorem 2.1. Let α(p) be a family of matrix pairs. Then in the neighborhood
of a point p0, the family α(p) can be represented in the form

α(p) = γ(p) ◦
(
α0 +

�∑
i=1

qi(p)αc
i

)
.(2.16)

In this formula {αc
1, . . . , α

c
�}, � = dim (Tα0

O(α0))c, is a basis of (Tα0
O(α0))c; γ(p) is

a feedback equivalence transformation smoothly dependent on p such that γ(p0) = e;
q1(p), . . . , q�(p) are smooth functions, whose values and derivatives at p0 are

q1(p0) = · · · = q�(p0) = 0,(2.17)
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∂q1
∂pj
...
∂q�
∂pj

 = Z−1


〈 ∂α
∂pj

, αn
1

〉
1

...〈 ∂α
∂pj

, αn
�

〉
1

 ,(2.18)

where {αn
1 , . . . , α

n
� } is a basis of the linear space (Tα0O(α0))⊥; Z is a nonsingular

�× � matrix with the elements zij = 〈αc
j , α

n
i 〉1.

Formulae for derivatives of the functions q1(p), . . . , q�(p) and γ(p) of any order
were derived in [8]. The family of matrix pairs

β(q) = α0 +

�∑
i=1

qi α
c
i , q = (q1, . . . , q�),(2.19)

is called a versal deformation of the matrix pair α0; q is a parameter vector of the
versal deformation [1]. The main idea of the above theorem is that any matrix family
α(p) with a given pair α0 = α(p0) can be transformed locally to the versal deformation
β(q), which has an explicit and simple form, by the feedback equivalence transfor-
mation γ(p) smoothly dependent on p and smooth change of parameters q = q(p).
Note that the bases {αc

1, . . . , α
c
�} and {αn

1 , . . . , α
n
� } have been found explicitly in [6]

for matrix pairs reduced to the Brunovsky canonical form.
Example 2.1. Let us consider a one-parameter family of matrix pairs α(p) =

(A(p),B(p)), where

A(p) =

 p 0 p2

2p p −p
3p p 2 + p3

 , B(p) =

 1 p
p 1
0 −p

 .(2.20)

Family (2.20) determines a one-parameter dynamical system (2.1) with three-dimen-
sional state space and two-dimensional input vector. The pair α0 = α(p0) for p0 = 0
has the form

α0 =

 0 0 0
0 0 0
0 0 2

 ,

 1 0
0 1
0 0

 ,(2.21)

which is the Brunovsky canonical form (2.8), (2.9) with r = 2, k1 = k2 = 1, and
J = (2). Solving the linear equation df∗

α0
(α) = 0 with respect to α and using relation

(2.15), we find that the space (Tα0
O(α0))⊥ has dimension � = 3 and consists of the

matrix pairs 0 0 0
0 0 0
q1 q2 q3

 ,

 0 0
0 0

2q1 2q2

 ∈ (Tα0O(α0))⊥, q1, q2, q3 ∈ R.(2.22)

The complimentary subspace (Tα0O(α0))c can be chosen in a more simple form as
follows:  0 0 0

0 0 0
q1 q2 q3

 ,

 0 0
0 0
0 0

 ∈ (Tα0
O(α0))c, q1, q2, q3 ∈ R.(2.23)
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Expressions (2.22) and (2.23) generate the bases {αn
1 , α

n
2 , α

n
3} and {αc

1, α
c
2, α

c
3} as

coefficients corresponding to q1, q2, q3.
By Theorem 2.1, family (2.20) can be represented in the form α(p) = γ(p) ◦

β(q(p)), where β(q) is the versal deformation

β(q) =

 0 0 0
0 0 0
q1 q2 2 + q3

 ,

 1 0
0 1
0 0

 , q = (q1, q2, q3),(2.24)

γ(p) is a feedback equivalence transformation smoothly dependent on p, and q = q(p)
is a smooth change of parameters. Derivatives of the functions q1(p), q2(p), q3(p) at
p0 = 0 can be calculated by expression (2.18) as follows:

dq1
dp

= 3,
dq2
dp

= −1,
dq3
dp

= 0.(2.25)

3. Structure of the uncontrollability set. Let us consider a multiparameter
dynamical system described by a family of matrix pairs α(p). A set of values of the
parameter vector p such that α(p) is uncontrollable is called the uncontrollability set
and denoted by

N = {p | α(p) is uncontrollable }.(3.1)

It is known that N is typically a set of zero measure [13]. In particular, any un-
controllable system can be made controllable by an arbitrarily small perturbation
of the matrices A and B. Nevertheless, when the parameter vector is close to the
uncontrollability set N , the system becomes practically uncontrollable due to small
perturbations and uncertainties existing in every physical system, and the necessity
of using big control resources (large ‖u‖) or long time for control operation. This
makes analysis and construction of the uncontrollability set in the parameter space
important for the design of control systems.

As was mentioned in the previous section, for a fixed value of p the matrix pair
α(p) can be transformed to the Brunovsky canonical form (2.8), and the uncontrol-
lability of α(p) is equivalent to the existence of the Jordan part in this form. Let us
consider two specific types of the Brunovsky form that will be important for further
analysis. These two forms are represented by the 1 × 1 and 2 × 2 Jordan parts

Jσ = (σ), Jσ±iω =

(
σ ω
−ω σ

)
, σ, ω ∈ R, ω > 0,(3.2)

corresponding to a real simple eigenvalue σ and a pair of complex conjugate simple
eigenvalues σ± iω, respectively. Structure of the Kronecker part can be arbitrary. We
refer to matrix pairs having the described structures of the Brunovsky form as pairs
of Jσ and Jσ±iω types.

To describe the qualitative structure of the uncontrollability set N , it is reasonable
to restrict our attention to the generic (typical) situation. This corresponds to a
typical form of the set N such that small perturbations of the family α(p) do not
lead to qualitative changes in the geometry and structure of N but result only in
its small shift in the parameter space. For more precise mathematical formulation
of the concept “generic,” see [1]. Consideration of the generic case allows extracting
the most typical and interesting information on the structure of the uncontrollability
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Fig. 3.1. Structure of the uncontrollability set.

set, which is valid for almost all multi-input linear dynamical systems dependent on
parameters. The following theorem provides the basic qualitative description of this
set.

Theorem 3.1. In the generic case the uncontrollability set N of the family of
matrix pairs α(p) has a regular part, which consists of smooth surfaces of codimen-
sions m and 2m corresponding to matrix pairs of Jσ and Jσ±iω types, respectively.
Points p ∈ N such that the matrix pair α(p) has a different type of the Brunovsky
form belong to the boundary of these surfaces.

Example 3.1. Let us consider the family of matrix pairs

α(p) =




0 1 0 0
0 0 0 0
p1 0 0 1
p2 0 p3 0

 ,


0
1
0
0


 , p = (p1, p2, p3).(3.3)

Using the controllability condition (2.2), we find the uncontrollability set in the form

N = {p ∈ R
3 | p2

1p3 − p2
2 = 0}.(3.4)

This set is shown in Figure 3.1. It represents the well-known Whitney–Cayley um-
brella [1]. The structure of N agrees with Theorem 3.1. Indeed, the set N has a
“handle” (the ray p1 = p2 = 0, p3 < 0), which has codimension 2m = 2 and cor-
responds to pairs of Jσ±iω type with the generalized eigenvalues σ ± iω = ±i√−p3.
There are two smooth surfaces of codimension m = 1 determined by the equation
p2
1p3 − p2

2 = 0 for p3 ≥ 0, p1 < 0 and p3 ≥ 0, p1 > 0, which correspond to the pairs
of Jσ type; the generalized eigenvalue is σ = −p2/p1. The “handle” and two surfaces
form a regular part of N . There are also different types of uncontrollable pairs: at
the point p = 0 we have a pair with the Jordan part J = ( 0 1

0 0 ), and points of the
ray p1 = p2 = 0, p3 > 0 correspond to pairs having two different real generalized
eigenvalues σ1,2 = ±√

p3. These points determine singularities of N and belong to
the boundary of the regular part.

According to Theorem 3.1, we can expect to find a similar structure of the un-
controllability set for almost all families of matrix pairs. This means that for the
construction of the uncontrollability set it is sufficient to find its regular part, i.e.,
points of Jσ and Jσ±iω types forming smooth surfaces of codimensions m and 2m,
respectively. Then the whole set N will be the closure of these surfaces.
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Proof. The proof is based on general results of the singularity theory and uses
versal deformations. In order to avoid special mathematical language, we describe
general steps and ideas of the proof, while the details can be easily reconstructed by
the reader using the cited literature.

The decomposition of the parameter space into subsets (strata) according to the
Brunovsky structure of the corresponding matrix pair α(p) is called the bifurcation
diagram. The singularity theory says that the qualitative local structure of the bi-
furcation diagram (and, hence, of the uncontrollability set) for a generic family α(p)
is the same as for the versal deformation β(q) [1]. In particular, codimensions of
strata in the corresponding parameter spaces coincide. This follows from the rela-
tion α(p) = γ(p) ◦ β(q(p)) and the property that the Brunovsky canonical form is
invariant under the feedback equivalence transformation γ(p).

Let us consider a matrix pair α0 = α(p0). Without loss of generality, we can
assume that α0 is transformed to the Brunovsky canonical form (2.8). Then its versal
deformation can be taken in the form

β(q) =

((
N 0
Xc

21 J + Xc
22

)
,

(
E + Yc

11 Yc
12

0 Yc
22

))
,(3.5)

where Xc
ij(q) and Yc

ij(q) are matrices depending on a vector of parameters q ∈ R
�

such that every matrix is zero at q = 0. Explicit form of these matrices depends on
the structure of N and J. In the case J = Jσ we can take [6]

Xc
21 =

(
Lc

1(q1), . . . ,Lc
r(qr)

)
, Yc

22 = (qr+1, . . . , qm), J + Xc
22 = (σ + qm+1),(3.6)

where Lc
i (qi) = (qi, 0, . . . , 0) is a 1×ki matrix; k1, . . . , kr are the controllability indices

of the Kronecker part N. The matrices Yc
11 and Yc

12 depend on qm+2, . . . , q�. Using
the controllability condition (2.2), one can show that in the vicinity of q = 0 versal
deformation (3.5), (3.6) is controllable if and only if at least one of the parameters
q1, . . . , qm is nonzero. Hence, the uncontrollability set for the versal deformation is
given locally by the equalities

q1 = · · · = qm = 0.(3.7)

Taking a point q such that (3.7) holds, it is easy to see that the pair β(q) has Jσ type
with the generalized eigenvalue σ + qm+1. Since the uncontrollability set of a generic
family of matrix pairs α(p) has the same local structure, we conclude that the set N
in the neighborhood of a point p0, corresponding to a pair of Jσ type, is a smooth
surface of codimension m, whose points correspond to pairs of Jσ type.

Analogously, in the case J = Jσ±iω we can take [6]

Xc
21 =

(
Lc

1(q1, q2), . . . ,Lc
r(q2r−1, q2r)

)
,

Yc
22 =

(
q2r+1 · · · q2m−1

q2r+2 · · · q2m

)
,

J + Xc
22 =

(
σ + q2m+1 ω + q2m+2

−ω − q2m+2 σ + q2m+1

)
,

(3.8)

where Lc
i (q2i−1, q2i) is a 2 × ki matrix of the form

Lc
i (q2i−1, q2i) =

(
q2i−1 0 · · · 0
q2i 0 · · · 0

)
.(3.9)
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The matrices Yc
11 and Yc

12 depend on q2m+3, . . . , q�. The uncontrollability set of this
versal deformation in the vicinity of q = 0 is given by the equations

q1 = · · · = q2m = 0.(3.10)

At the points q satisfying (3.10), the pair β(q) has Jσ±iω type, and the complex
conjugate generalized eigenvalues are equal to σ + q2m+1 ± i(ω + q2m+2). Hence,
the uncontrollability set of a generic family α(p) in the neighborhood of a point p0,
corresponding to a pair of Jσ±iω type, is a smooth surface of codimension 2m. Points
of this surface correspond to matrix pairs of Jσ±iω type.

Now, let us consider a matrix pair α0 having a different Jordan part J. In this
case the block J + Xc

22 is identical to the versal deformation of a square matrix J
under the similarity equivalence in the space of square matrices [1, 6]. From [1]
we know that, for any J, taking arbitrarily small parameters q, we can obtain the
matrix J + Xc

22(q) having only simple eigenvalues. Then, taking arbitrarily small
parameters in the block Xc

21(q), we can destroy the Jordan structure corresponding
to every simple eigenvalue, leaving only one real generalized eigenvalue σ or one pair
of complex conjugate generalized eigenvalues σ± iω. Hence, an uncontrollable system
of Jσ or Jσ±iω type can be found in any neighborhood of q = 0. The same holds for
a generic family of matrix pairs α(p); i.e., a point p0 ∈ N either lies on a surface
represented by matrix pairs of Jσ or Jσ±iω types (regular points of N ) or belongs to
a boundary of these surfaces.

Remark. Let us consider matrix pairs α with a fixed Jordan part J in the
Brunovsky form. In the generic case, a Kronecker part N in the Brunovsky form
of almost all matrix pairs α has maximal possible number of blocks r, and the sizes
k1, . . . , kr of these blocks are different by no more than one, i.e., k1 = · · · = kr′ =
kr′+1 + 1 = · · · = kr + 1 [6]. In this case Yc

11 = 0 and Yc
12 = 0 in versal deformation

(3.5). Such a Kronecker part cannot be changed by a small perturbation of the pa-
rameters if we do not change the structure of the Jordan part. On the contrary, if the
matrix pair has a different Kronecker part, then we can always find a nearby matrix
pair with the generic Kronecker part, keeping the structure of the Jordan part [6].

4. Perturbation analysis of the uncontrollability set. Let us assume that
we are given a point p0 ∈ N corresponding to a pair α(p0) of Jσ or Jσ±iω type. From
Theorem 3.1 we know the generic structure of N in the neighborhood of p0. Never-
theless, some symmetry or degeneracy of the family α(p) may cause the appearance
of a nongeneric structure. For example, the pair

α(p) =

((
0 0
0 p1 + p2 + p3

)
,

(
1
0

))
(4.1)

is uncontrollable for all p ∈ R
3, and α(p) has Jσ type for any p. Clearly, an arbi-

trarily small perturbation of the family can result in the generic structure of N . For
example, taking the (2, 1)th element of the first matrix to be εp1 for an arbitrarily
small ε > 0, the set N becomes the plane p1 = 0 of codimension 1, which is the
generic case. Therefore, it would be useful to have a constructive criterion guarantee-
ing that the structure of N is generic for a given family α(p). For applications and
numerical analysis of the uncontrollability set it is also important to have quantitative
local information on N , i.e., its tangent plane and perturbations of the generalized
eigenvalues. The solution of these problems is given in the following theorems.
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Let p0 be a point of the uncontrollability set N for a family of matrix pairs
α(p). Let γb = (P,Q,R) ∈ G be a triple determining the feedback equivalence
transformation of the pair α0 = α(p0) to its Brunovsky canonical form αb = γb ◦ α0.

For the pair α0 of Jσ type with the generalized eigenvalue σ, we define real vectors
fi = (f1

i , . . . , f
k
i ), i = 1, . . . ,m, and fσ = (f1

σ , . . . , f
k
σ ) with the components

f j
i = P−1(n, :)

[
∂A

∂pj

ki∑
s=1

σs−1P(:,Ki + s)

+
∂B

∂pj

( ki∑
s=1

σs−1R(:,Ki + s) + σkiQ(:, i)

)]
, i = 1, . . . , r;

f j
i = P−1(n, :)

∂B

∂pj
Q(:, i), i = r + 1, . . . ,m;

f j
σ = P−1(n, :)

[
∂A

∂pj
P(:, n) +

∂B

∂pj
R(:, n)

]
;

(4.2)

where K1 = 0, Ki = k1 + · · · + ki−1; P−1(n, :), P(:, i), Q(:, i), and R(:, i) denote the
nth row of P−1 and the ith columns of P, Q, and R, respectively.

Theorem 4.1. Let us assume that α0 = α(p0) is a matrix pair of Jσ type,
and the vectors f1, . . . , fm are linearly independent. Then in the vicinity of p0 the
uncontrollability set N is a smooth surface of codimension m corresponding to matrix
pairs of Jσ type. Its tangent plane at p0 is given by the equations

(f1,p− p0) = · · · = (fm,p− p0) = 0,(4.3)

where (fi,p − p0) =
∑k

j=1 f
j
i (pj − p0j) is a scalar product in R

k. The generalized
eigenvalue for p ∈ N in the neighborhood of the point p0 is given by the expression

σ + (fσ,p− p0) + o(‖p− p0‖).(4.4)

For the pair α0 of Jσ±iω type with the generalized eigenvalues σ±iω, we define real
vectors fs = (f1

s , . . . , f
k
s ), s = 1, . . . , 2m, fσ = (f1

σ , . . . , f
k
σ ), and fω = (f1

ω, . . . , f
k
ω)

with the components

f j
2s−1 + if j

2s =

1∑
z=0

i1−zP−1(n− z, :)

[
∂A

∂pj

ks∑
v=1

(σ − iω)v−1P(:,Ks + v)

+
∂B

∂pj

( ks∑
v=1

(σ − iω)v−1R(:,Ks + v) + (σ − iω)ksQ(:, s)

)]
, s = 1, . . . , r;

(4.5)

f j
2s−1 + if j

2s =

1∑
z=0

i1−zP−1(n− z, :)
∂B

∂pj
Q(:, s), s = r + 1, . . . ,m;(4.6)

f j
σ + if j

ω =
1

2

1∑
z=0

1∑
v=0

iz−vP−1(n− z, :)

[
∂A

∂pj
P(:, n− v) +

∂B

∂pj
R(:, n− v)

]
;(4.7)

where i is the imaginary unit.
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Theorem 4.2. Let us assume that α0 = α(p0) is a matrix pair of Jσ±iω type,
and the vectors f1, . . . , f2m are linearly independent. Then in the vicinity of p0 the
uncontrollability set N is a smooth surface of codimension 2m corresponding to matrix
pairs of Jσ±iω type. Its tangent plane at p0 is given by the equations

(f1,p− p0) = · · · = (f2m,p− p0) = 0.(4.8)

The generalized eigenvalues for p ∈ N in the neighborhood of p0 are given by the
expression

σ + (fσ,p− p0) ± i
(
ω + (fω,p− p0)

)
+ o(‖p− p0‖).(4.9)

The important consequence of Theorems 4.1 and 4.2 is that to determine the
local structure of the uncontrollability set we need only derivatives of the family α(p)
with respect to the parameters at p0 and the triple γb = (P,Q,R) transforming
the pair α0 to the Brunovsky canonical form. The triple γb can be found using the
software developed in [4, 5], which provides the Kronecker canonical form of the matrix
pencil (A0,B0) − λ(In, 0). The Brunovsky form can be obtained from the Kronecker
canonical form by permutation of columns [9].

Example 4.1. Let us consider a three-parameter two-input system (2.1) with the
matrices A and B given by the relations

A(p) =

 −p3 p1p2 p1p2

2 − p3 3 + p1p2 1 + p1p2

−2 − 2p2
2 p1 − 1 1 − p2

 , B(p) =

 1 −p2

1 1 − p2

−1 p2 − 1

 .

The matrix pair α0 = (A(p0),B(p0)) at p0 = (0, 0, 0) is uncontrollable and has Jσ

type. Its Brunovsky form consists of two 1×1 blocks N1 = N2 = (0) in the Kronecker
part (r = 2, k1 = k2 = 1) and the Jordan part J = (σ) with the generalized eigenvalue
σ = 2. The transformation of α0 to the Brunovsky form is performed by the triple
γb = (P,Q,R) with the matrices

P =

 1 0 0
1 1 0
−1 −1 1

 , Q =

(
1 0
0 1

)
, R =

(
0 0 0
−4 −2 −1

)
.(4.10)

Using formulae (4.2), we compute the vectors

f1 = (1, 1,−1), f2 = (1, 1, 0), fσ = (0,−1, 0).(4.11)

Since the vectors f1 and f2 are linearly independent, by Theorem 4.1, the uncon-
trollability set N is a smooth curve in the neighborhood of p0 = (0, 0, 0) with the
tangent

(f1,p− p0) = p1 + p2 − p3 = 0, (f2,p− p0) = p1 + p2 = 0.(4.12)

The generalized eigenvalue of the matrix pair α(p) for p ∈ N is approximated by

σ + (fσ,p− p0) + o(‖p− p0‖) = 2 − p2 + o(‖p‖).(4.13)

It is straightforward to check that α(p) = γ(p) ◦ β(q(p)), where

β(q) =

 0 0 0
0 0 0
q1 q2 2 + q3

 ,

 1 0
0 1
0 0

 ,

q1(p) = p1 + p2 − p3 − 2p2
2,

q2(p) = p1 + p2,

q3(p) = −p2 + p1p2,
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γ(p) =

 1 0 0
−1 1 0
0 1 1

 ,

(
1 −p2

0 1

)
,

( −p3 p1p2 p1p2

2 3 1

) .

Hence, we find exact expressions for the uncontrollability set and the generalized
eigenvalue in the form

N = {p ∈ R
3 | p1 + p2 − p3 − 2p2

2 = 0, p1 + p2 = 0},
σ(p) = 2 − p2 + p1p2.

(4.14)

This agrees with the results obtained by Theorem 4.1.
Proof of Theorem 4.1. Let us consider a family of matrix pairs α̃(p) = γb ◦ α(p).

This family is a deformation of the Brunovsky canonical form α̃(p0) = αb. By The-
orem 2.1, the family α̃(p) can be represented in the form α̃(p) = γ̃(p) ◦ β(q(p)),
where β(q) is the versal deformation of αb having the form (3.5), (3.6). Since the con-
trollability property is invariant under the feedback equivalence transformation, the
uncontrollability sets for the families α(p) and β(q(p)) coincide in the neighborhood
of p0 and, according to (3.7), have the form

q1(p) = · · · = qm(p) = 0,(4.15)

where q1(p0) = · · · = qm(p0) = 0 by construction. Derivatives of the functions qi(p)
at p0 are given by expression (2.18) of Theorem 2.1, where we take α̃(p) and αb

instead of α(p) and α0, respectively. Formula (2.18) requires the basis {αn
1 , . . . , α

n
� }

of the subspace (Tαb
O(αb))

⊥. This subspace for a matrix pair in the Brunovsky
canonical form was found explicitly in [6]. It is convenient to represent the basis of
(Tαb

O(αb))
⊥ in the form of the family αn

1 q1 + · · · + αn
� q�, which, for the matrix pair

αb under consideration, takes the form((
Xn

11 0
Xn

21 Xn
22

)
,

(
Yn

11 Yn
12

Yn
21 Yn

22

))
,(4.16)

where

Xn
21 =

(
Ln

1 (q1), . . . , Ln
r (qr)

)
, Xn

22 = (qm+1),

Yn
21 = (σk1q1, . . . , σ

krqr), Yn
22 = (qr+1, . . . , qm);

(4.17)

Ln
i (qi) = (qi, σqi, . . . , σ

ki−1qi) is a 1 × ki matrix. The blocks Xn
11(q), Yn

11(q), and
Yn

12(q) depend on qm+2, . . . , q�. Comparing this basis with the basis {αc
1, . . . , α

c
�}

defined by (3.5), (3.6), we see that zij = 〈αc
j , α

n
i 〉1 = δij if i ≤ m + 1 or j ≤ m + 1,

where δij is the Kronecker delta. Hence, using (2.18), we find the derivatives of
q1(p), . . . , qm+1(p) at p0 in the form

∂qi
∂pj

=
〈 ∂α̃
∂pj

, αn
i

〉
1
, i = 1, . . . ,m + 1.(4.18)

Using α̃(p) in its original form γb ◦α(p) = (P−1(A(p)P+B(p)R), P−1B(p)Q) and
the explicit form of αn

i , we find

∂qi
∂pj

= f j
i , i = 1, . . . ,m;

∂qm+1

∂pj
= f j

σ(4.19)
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with f j
i and f j

σ defined in (4.2). Therefore, f1, . . . , fm, and fσ are the gradient vectors
of the functions q1(p), . . . , qm+1(p) at p0:

∇qi = fi, i = 1, . . . ,m; ∇qm+1 = fσ; ∇ =

(
∂

∂p1
, . . . ,

∂

∂pk

)
.(4.20)

If the gradient vectors ∇q1, . . . ,∇qm are linearly independent, then, by the implicit
function theorem, the set N determined by (4.15) is a smooth surface of codimension
m with the tangent plane (4.3). If q1(p) = · · · = qm(p) = 0, then we see from (3.5),
(3.6) that β(q) and, hence, α(p) is a matrix pair of Jσ type with the generalized
eigenvalue σ + qm+1(p) = σ + (fσ,p− p0) + o(‖p− p0‖).

Proof of Theorem 4.2. The case when the pair α0 has Jσ±iω type is studied
analogously. In this case the versal deformation β(q) takes the form (3.5), (3.8),
(3.9), and the basis {αn

1 , . . . , α
n
� } is represented by family (4.16) with

Xn
21 =

[
Ln

1 (q1, q2), . . . , Ln
r (q2r−1, q2r)

]
,

Xn
22 =

(
q2m+1/2 q2m+2/2

−q2m+2/2 q2m+1/2

)
,

Yn
21 =

(
Re (q1 + iq2)(σ + iω)k1 · · · Re (q2r−1 + iq2r)(σ + iω)kr

Im (q1 + iq2)(σ + iω)k1 · · · Im (q2r−1 + iq2r)(σ + iω)kr

)
,

Yn
22 =

(
q2r+1 · · · q2m−1

q2r+2 · · · q2m

)
,

(4.21)

where Ln
s (q2s−1, q2s) is a 2 × ks matrix of the form

Ln
s =

(
q2s−1 σq2s−1 − ωq2s · · · Re (q2s−1 + iq2s)(σ + iω)ks−1

q2s ωq2s−1 + σq2s · · · Im (q2s−1 + iq2s)(σ + iω)ks−1

)
,(4.22)

and the blocks Xn
11, Yn

11, and Yn
12 depend on q2m+3, . . . , q�. The uncontrollability set

is given by the equations

q1(p) = · · · = q2m(p) = 0,(4.23)

where the gradients ∇q1, . . . ,∇q2m+2 are equal to the vectors f1, . . . , f2m, fσ, fω de-
fined in (4.5)–(4.7). The generalized eigenvalues on the surface (4.23) are determined
by the expression

σ + q2m+1(p) ± i(ω + q2m+2(p)) = σ +(fσ,p− p0) ± i
(
ω + (fω,p− p0)

)
+ o(‖p− p0‖).

5. Numerical construction of the uncontrollability set. Perturbation ana-
lysis developed in the previous section can be applied to numerical construction of
the uncontrollability set by continuation if one point of this set is known.

Let us illustrate the implementation of this procedure for a specific case of a three-
parameter system with one-input variable (k = 3 and m = 1); dimension of the state
space is arbitrary. Let us assume that we are given a point p0 ∈ N corresponding to
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a matrix pair α(p0) of Jσ±iω type. By Theorem 3.1, in the generic case the set N is
a smooth curve in a vicinity of the point p0. Let us introduce the length parameter y
along the curve N . Then the curve N is given by a smooth function p(y) such that
‖dp/dy‖ = 1. By Theorem 4.2, the vectors f1, f2 ∈ R

3 evaluated by expressions (4.5),
(4.6) at p(y) are normal vectors to the curve N at p(y). The vector product f1 × f2
is a tangent vector to N . Hence, we find

dp

dy
= g, g =

f1 × f2
‖f1 × f2‖ .(5.1)

Using expressions (4.9) and (5.1), we find derivatives of the functions σ(y) and
ω(y), which determine the generalized eigenvalues σ(y) ± iω(y) of the matrix pair
α(p(y)), as follows:

dσ

dy
= (fσ,g),

dω

dy
= (fω,g).(5.2)

Equations (5.1) and (5.2) represent a system of ordinary differential equations
with respect to p, σ, and ω. Initial conditions at y = 0 are given by

p(0) = p0, σ(0) = σ0, ω(0) = ω0,(5.3)

where σ0± iω0 are generalized eigenvalues of the matrix pair α(p0) at the given point
p0 ∈ N . Integrating this system forwards and backwards, we find a regular part of
the uncontrollability set of Jσ±iω type. Since we use the local information on the
uncontrollability set, there is no guarantee that we have found the whole set N in
the parameter space. Nevertheless, we obtain a finite piece of the uncontrollability
set containing the given point p0. The integration can be continued until we reach
a physical boundary of the parameter space or arrive at a singularity (boundary of
the regular part of N ). A singularity causes numerical instability of the integration
procedure and can be recognized by the appearance of a matrix pair with a different
Jordan structure.

To determine right-hand sides of system (5.1), (5.2), we need to find the trans-
formation to the Brunovsky canonical form

αb(y) = γb(y) ◦ α(p(y))(5.4)

at each y. This can be done using the software [4, 5] providing the Kronecker canonical
form of the matrix pencil

(
A(p(y)),B(p(y))

)−λ(In, 0). Then permutation of columns
provides the Brunovsky canonical form [9]. In these calculations, the information on
the generalized eigenvalues σ(y) ± iω(y) can be used.

Alternatively, we can calculate αb(y) and γb(y) by taking advantage of the remark
in section 3. In the generic case, the Brunovsky form αb(y) has one (n− 2) × (n− 2)
block N1 in the Kronecker part:

αb(y) =

((
N1 0

0 Jσ±iω

)
,

(
E1

0

))
.(5.5)

Taking the derivative of (5.4) with respect to y, we find

dαb

dy
= dfαb

(
γ−1
b

dγb
dy

)
+ γb ◦ dα(p(y))

dy
,(5.6)
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where dfαb
(ξ) is the differential of the function fαb

(γ) at the unit element e defined by
expression (2.12). Introducing the matrix triple ξ = γ−1

b dγb/dy and using expression
(5.1), we find a linear algebraic equation

dfαb
(ξ) =

dαb

dy
− γb ◦

(
k∑

i=1

∂α

∂pi
gi

)
.(5.7)

Then the derivative of the function γb(y) is given by the relation

dγb
dy

= γb(y)ξ.(5.8)

Equation (5.7) does not determine the triple ξ uniquely (transformation to the Bru-
novsky form is not unique). It is convenient to choose a particular solution satisfying
the condition

ξ ∈ (Ker dfαb

)⊥
,(5.9)

which determines a unique ξ. A numerical method for finding this solution is given
in the appendix.

Differential equation (5.8) can be integrated together with system (5.1), (5.2). As
a result, we find the Brunovsky canonical form αb(y) and the feedback equivalence
transformation γb(y) at each point of the uncontrollability set represented by the
curve p(y). The initial conditions are given by

γb(0) = γ0
b ,(5.10)

where γ0
b transforms the matrix pair α(p0) to the Brunovsky form. Note that ma-

trices of the triple γb(y) = (Pb(y),Qb(y),Rb(y)) may become ill-conditioned when
approaching a singularity of N . To control the accuracy of calculations and to detect
a singularity it is convenient to use the norm ‖αb(y)−γb(y)◦α(p(y))‖, which describes
the error in equality (5.4).

Similarly, we can calculate a regular part of the uncontrollability set, correspond-
ing to matrix pairs of Jσ type, which is a smooth surface for a three-parameter one-
input dynamical system. Recall that, by Theorem 3.1, the surfaces corresponding to
matrix pairs of Jσ and Jσ±iω types, together with their boundaries, form the whole
uncontrollability set of a generic multi-input linear dynamical system.

Example 5.1. Let us consider a mechanical system shown in Figure 5.1. The
system consists of a thin uniform platform of mass m and length 2l supported at both
ends by springs having elastic coefficients k1, k2 and viscous damping coefficients d1,
d2. There is a vertical force F applied to the platform at the distance ξl from the
middle. As generalized coordinates, we take a vertical coordinate z of the center of the
platform and an angle ϕ between the platform and horizontal axis. The equilibrium
of the system for zero external force F = 0 is assumed to be z = 0, ϕ = 0.

Equations of motion of the system linearized near the equilibrium take the form

mz̈ + d1(ż + lϕ̇) + d2(ż − lϕ̇) + k1(z + lϕ) + k2(z − lϕ) = F,

Imϕ̈ + d1l(ż + lϕ̇) − d2l(ż − lϕ̇) + k1l(z + lϕ) − k2l(z − lϕ) = −ξlF,
(5.11)

where Im = ml2/3 is the moment of inertia of the platform with respect to the center
of mass; the dot denotes differentiation with respect to time t. If F = 0, then the
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Fig. 5.1. Mechanical system controlled by a vertical force.

system oscillates with a decaying amplitude and comes to the equilibrium in infinite
time t −→ +∞. Let us consider the force F as a control parameter. If the system
is controllable, then it can be damped (put into the equilibrium) in finite time. This
task becomes difficult or impossible if the system is close to the uncontrollable system.

Let us introduce nondimensional variables

τ = t/α, f1 =
(d1 + d2)α

m
, f2 =

(d1 − d2)α

m
,

c1 =
(k1 + k2)α2

m
, c2 =

(k1 − k2)α2

m
, u =

α2

ml
F,

(5.12)

where α is a time scale, and choose a state vector x ∈ R
4 in the form

x1 =
z

l
, x2 = ϕ, x3 =

αż

l
, x4 = αϕ̇.(5.13)

Then system (5.11) can be written in the form ẋ = Ax + Bu, where derivative is
taken with respect to nondimensional time τ , and the matrices A and B are

A =


0 0 1 0
0 0 0 1

−c1 −c2 −f1 −f2

−3c2 −3c1 −3f2 −3f1

 , B =


0
0
1

−3ξ

 .(5.14)

Let us fix the parameters c1 = 25/12 and f1 = 1, characterizing the joint stiffness
and damping of supports, and consider the parameter vector p = (c2, f2, ξ). Let us
consider the point p0 = (0, 0, 0) corresponding to equal supports and the force applied
at the center of the platform. The matrix pair α(p0) is uncontrollable and has the
Brunovsky canonical form

Ab =


0 1 0 0
0 0 0 0
0 0 σ0 ω0

0 0 −ω0 σ0

 , Bb =


0
1
0
0

(5.15)

with the uncontrollable modes σ0 ± iω0 = −1.5 ± i2. The triple γ0
b = (Pb,Qb,Rb)
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Fig. 5.2. (a) Uncontrollability set in the parameter space; (b) uncontrollable modes σ(y) ± iω(y).

transforming α(p0) to the Brunovsky form is

Pb =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 −1.5 2

 , Qb = (1), Rb =
(

25/12 1 0 0
)
.(5.16)

The point p0 belongs to the uncontrollability set and has Jσ±iω type. Integrating
equations (5.1), (5.2), (5.8) with initial conditions (5.3), (5.10) numerically, we find
the uncontrollability set N in the physical range of parameters −c1 < c2 < c1 and
−f1 < f2 < f1 corresponding to positive characteristics of the supports. The result is
shown in Figure 5.2(a), where the set N is represented by a solid line. Figure 5.2(b)
shows graphs of the real and imaginary parts of the uncontrollable modes σ(y)±iω(y).
The maximal error ‖αb(y)−γb(y)◦α(p(y))‖ along the curve N is about 4·10−7, which
is less than the accuracy of the ordinary differential equation solver (the calculations
were carried out in MATLAB using the standard ode45 solver).

Using the computed data, it can be shown that one mode of free vibrations of
the system with the parameter vector p(y) = (c2(y), f2(y), ξ(y)) has a node at the
distance ξ(y)l from the center of the platform; i.e., this mode represents rotation of
the platform around a point. The force F applied at this point has no influence on the
rotational mode, which leads to uncontrollability of the system. From Figure 5.2(a)
we see that uncontrollability occurs when one of the supports has smaller stiffness
and damping coefficients, and the force is applied at the side of a softer support.
The obtained results are useful for the design of the system to avoid uncontrollability
effects.

6. Singularities of the uncontrollability set. In this section we consider
points of the uncontrollability set corresponding to matrix pairs whose types are
different from Jσ and Jσ±iω. By Theorem 3.1, these points belong to a boundary
of the regular part of N , represented by matrix pairs of Jσ and Jσ±iω types, and
determine singularities (nonsmooth points) of the uncontrollability set.

In order to understand the role of singular points in the structure of the uncon-
trollability set, let us consider a specific case when the Jordan part of the Brunovsky
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canonical form αb of a pair α(p), p ∈ N , is a 2 × 2 Jordan block

Jσ2 =

(
σ 1
0 σ

)
(6.1)

with a double real generalized eigenvalue σ. In the generic case, points p ∈ N
corresponding to matrix pairs of this type form a smooth surface of codimension
2m + 1 in the parameter space [6]. If the number of parameters is less than 2m + 1,
then matrix pairs of Jσ2 type do not appear in generic families α(p).

In the case under consideration, a versal deformation of the pair αb has the form
(3.5), where [6]

Xc
21 = (Lc

1(q1, q2), . . . ,Lc
r(q2r−1, q2r)),

Yc
22 =

(
q2r+1 · · · q2m−1

q2r+2 · · · q2m

)
, Xc

22 =

(
q2m+2 0
q2m+1 q2m+2

)
,

(6.2)

and Lc
i (q2i−1, q2i) is a 2 × ki matrix of the form

Lc
i (q2i−1, q2i) =

(
q2i−1 0 · · · 0
q2i 0 · · · 0

)
;(6.3)

the blocks Yc
11 and Yc

12 depend on q2m+3, . . . , q�. Using controllability condition (2.2),
we find that the uncontrollability set of the versal deformation in the neighborhood
of q = 0 is determined by the equations

q22i−1q2m+1 − q22i = 0, i = 1, . . . ,m.(6.4)

Every equation in (6.4) determines in the space (q2i−1, q2i, q2m+1) a surface shown
in Figure 3.1 and discussed in Example 3.1. Hence, the regular part of the uncon-
trollability set consists of one smooth surface of Jσ±iω type and codimension 2m,
determined by the equations

qi = 0, i = 1, . . . , 2m, q2m+1 < 0,(6.5)

and smooth surfaces of Jσ type determined by the equations

q22i−1q2m+1 − q22i = 0, q2i−1 	= 0, i = 1, . . . ,m, q2m+1 ≥ 0.(6.6)

There are 2m separate surfaces of Jσ type corresponding to different combinations
of signs of the parameters q2i−1, i = 1, . . . ,m, in (6.6). The singular part of N is a
boundary of the regular part. It consists of several smooth surfaces, which are parts
of the set (6.4) with the additional condition

q2j−1 = q2j = 0, q2m+1 ≥ 0(6.7)

for some j ∈ {1, . . . ,m}.
The structure of the uncontrollability set for a generic family α(p) in the neigh-

borhood of a point p0 ∈ N of Jσ2 type is the same as for the versal deformation.
These sets are related by a smooth change of parameters q = q(p). Analogously to
the method of Theorem 4.1, we can use formulae of Theorem 2.1 to calculate the
gradients ∇qi of the functions qi(p) at the singular point p0. Then expressions (6.4)–
(6.7), where qi(p) is substituted by its linear approximation (∇qi,p − p0), provide
first-order approximations of the regular and singular parts of N .
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Singular points lead to a more rich and complicated structure of the uncontrol-
lability set. This affects the behavior of the underlying dynamical system and causes
numerical difficulties in the analysis of N . The information on the local form of N
at its regular or singular point is useful for the analysis and construction of the un-
controllability set. In particular, this information allows choosing the locally optimal
change of design parameters in order to get a controllable system.

7. Conclusion. In this paper, fundamental properties of the uncontrollability
set for a multi-input linear dynamical system dependent on parameters are investi-
gated. It is shown that the uncontrollability set has a regular part, which consists of
smooth surfaces corresponding to one real uncontrollable mode or a complex conju-
gate pair of uncontrollable modes. Explicit formulae for local quantitative analysis of
the uncontrollability set and perturbation of the uncontrollable modes are derived and
used for numerical construction of the uncontrollability set in the parameter space.

A constructive method for qualitative and quantitative analysis of the uncon-
trollability set based on the versal deformation theory is developed. The idea of
regularization of the parameter space by transformation to a versal deformation, pro-
posed in the paper, provides a powerful tool of multiparameter perturbation theory
for control systems.

Using the duality theorem [3, 13], all the results of this paper can be applied
to the analysis of an unobservability set for a multioutput linear dynamical system
dependent on parameters.

Appendix. Let us consider the linear algebraic equation with respect to ξ ∈ TeG

dfα(ξ) = α′, ξ ∈ (Ker dfα
)⊥
,(7.1)

assuming that a solution exists, i.e., α′ ∈ Im dfα. We denote by vec(A) a column
vector, which is an ordered stack of columns of A from left to right (its dimension is
equal to the number of elements of A). Analogously, we introduce the vectorization
of the matrix pairs α = (A,B), α′ = (A′,B′), and matrix triple ξ = (U,V,W) as
follows:

vec(α) =

(
vec(A)
vec(B)

)
, vec(α′) =

(
vec(A′)
vec(B′)

)
, vec(ξ) =

 vec(U)
vec(V)
vec(W)

 .(7.2)

Then (7.1) for the mapping dfα defined in (2.12) can be written in the form

Gαvec(ξ) = vec(α′), vec(ξ) ∈ (nullGα

)⊥
,(7.3)

where Gα is an (n2 + nm) × (n2 + m2 + nm) real matrix of the form

Gα =

(
In ⊗A−AT ⊗ In 0 In ⊗B

−BT ⊗ In Im ⊗B 0

)
,(7.4)

where In⊗A denotes the Kronecker product of matrices. The vector vec(ξ) satisfying

the condition vec(ξ) ∈ (nullGα

)⊥
can be expressed as follows:

vec(ξ) = GT
αy,(7.5)
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where y is a column vector of dimension n2 + nm. Substituting (7.5) into (7.3), we
find

GαG
T
αy = vec(α′).(7.6)

The linear mapping dfα considered in this paper has a nontrivial null-space. Hence,
the matrix GαG

T
α is singular. Recall that {αn

1 , . . . , α
n
� } is a basis of Ker df∗

α. Then
{vec(αn

1 ), . . . , vec(αn
� )} is a basis of the null-space of the symmetric matrix GαG

T
α .

Using the method described in [15], we construct the equation(
GαG

T
α +

�∑
i=1

vec(αn
i )
(
vec(αn

i )
)T)

y = vec(α′),(7.7)

where the matrix in the left-hand side is nonsingular. Solution y of (7.7) can be found
numerically using the standard codes. The obtained vector y is a particular solution
of (7.6), which determines the unique solution (7.5) of (7.1).

For a matrix pair α = αb, where αb is the Brunovsky canonical form (5.5) con-
sidered in section 5, we have � = 4, and the pairs αn

1 q1 + · · · + αn
4 q4 are given by

expressions (4.16), (4.21), (4.22), where r = 1, k1 = n − 2, Xn
11 = 0, Yn

11 = 0, and
Yn

12 = 0.
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