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Abstract. Families of matrices smoothly depending on a vector of parameters are considered.
Arnold [Russian Math. Surveys, 26 (1971), pp. 29–43] and Galin [Uspekhi Mat. Nauk, 27 (1972),
pp. 241–242] have found and listed normal forms of families of complex and real matrices (miniversal
deformations), to which any family of matrices can be transformed in the vicinity of a point in
the parameter space by a change of basis, smoothly dependent on a vector of parameters, and
by a smooth change of parameters. In this paper a constructive method of determining functions
describing a change of basis and a change of parameters, transforming an arbitrary family to the
miniversal deformation, is suggested. Derivatives of these functions with respect to parameters
are determined from a recurrent procedure using derivatives of the functions of lower orders and
derivatives of the family of matrices. Then the functions are found as Taylor series. Examples
are given. The suggested method allows using efficiently miniversal deformations for investigation
of different properties of matrix families. This is shown in the paper where tangent cones (linear
approximations) to the stability domain at the singular boundary points are found.
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1. Introduction. The paper deals with the study of families of complex and
real matrices (a family of matrices is a matrix-valued function A(p) holomorphically
(smoothly) depending on a vector p of complex (real) parameters). It is known that
from all families of matrices we can select such families that transformation of any
family to them can be carried out by a change of basis, smoothly depending on param-
eters, and by a smooth change of parameters [1, 2, 3]. Such families are called versal
deformations. Versal deformations with the minimum possible number of parameters
are called miniversal deformations or normal forms. Miniversal deformations of com-
plex matrices have been found by Arnold [1, 2, 3]. He showed that the miniversal
deformation, to which a family of matrices A(p) can be transformed in the vicinity
of a point p = p0, is determined by the Jordan form of the matrix A(p0). Miniversal
deformations of real matrices have been studied by Galin [8].

to .5pt The important part of the transformation of a family of matrices to the
normal form is to find functions describing a change of basis, depending on parameters,
and a change of parameters. Determination of these functions is necessary for effective
use of normal forms, but no general algorithm for finding them is available yet. Efforts
of construction of the transformation functions required in a specific case have been
done in [5, 12]. In the case when the matrix A0 = A(p0) has only nonderogatory
eigenvalues, the problem of construction of transformation to the normal form has
been discussed in [13]. However, the method of finding the transformation functions
suggested in [13] can be used only for matrices of small dimensions or in the case
when the matrix A0 has only one nonderogatory eigenvalue. Otherwise it leads to a
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complicated system of nonlinear equations containing parameters of the family and
parameters of the normal form.

Another approach has been suggested in [14], where the transformation functions
have been found at a specific value of the parameter vector p by solving a nonlinear
implicit matrix equation using secant, updating secant, or using Newton’s method.
Such a numerical approach, though useful for finding functions in a finite domain
(functions are calculated at several points and then approximated), is not efficient in
the case under consideration. This is connected with the local character of miniversal
deformations, which are defined in the vicinity of a point in the parameter space and
used for investigation of local properties of matrix families (singularities, bifurcations,
etc.). For local analysis, information about derivatives of the transformation functions
with respect to parameters is required. Computation of these derivatives by means
of approximate methods of [14] is very time-consuming and leads to numerical errors
(especially when the size of the matrix A is not small). In [14] also a method for com-
putation of derivatives of the transformation functions for a case of one-parameter
matrix family has been suggested. This family had a special form allowing transfor-
mation to a normal form which was simpler than a miniversal deformation.

In the present paper a constructive method of finding functions describing the
transformation of any given family of matrices to the normal form is suggested. The
functions are found as Taylor series. Derivatives of the functions with respect to
parameters, to determine coefficients of Taylor series, are found from a recurrent
procedure using the derivatives of lower orders of these functions and derivatives of
the family at the initial value of the vector of parameters. The recurrent procedure
is convenient for numerical implementation, since it consists of elementary arithmetic
operations. Proofs are based on properties of centralizers of matrices transformed to
the Jordan form.

Transformation of a family of matrices to the normal form has great significance
for applications. It allows studying specific families (normal forms), which consist
usually of sparse matrices depending on parameters in a simple way, and then ob-
taining results for arbitrary families of matrices. Miniversal deformations (without
knowledge about transformation to them) have been used in [1, 2, 3] for classification
of singularities of bifurcation diagrams, decrement diagrams, and boundaries of the
stability domains in the case of two and three parameters. In [10] miniversal deforma-
tions have been used for finding tangent cones (linear approximations) to the stability
domain at singular boundary points up to a diffeomorphism. All previous results were
qualitative. To obtain quantitative results we need information about the transforma-
tion. In [4] specific linear combinations of first derivatives of the functions describing
a change of parameters have been found and used to obtain necessary conditions for
the stable perturbations of matrices. Other applications of miniversal deformations
can be found in [6, 7], where a bound for a distance to a less generic matrix pencil
and backward error bound in the procedure of calculation of polynomial roots are
obtained.

The method of finding functions of transformation, suggested in this paper, allows
using miniversal deformations for quantitative study of different properties of matrices
depending on parameters. Efficiency of the method for applications is illustrated by
the problem of finding tangent cones (or parts of tangent cones) to the stability domain
for singular boundary points. All types of singular boundary points are considered.
The obtained results represent an extension of the paper [11], where, using another
approach, tangent cones for singular boundary points of the stability domain of two-
and three-parameter generic families of matrices have been found.
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The paper is organized as follows. In section 2 the method for determining deriva-
tives of functions describing the transformation of a family of complex matrices to
miniversal deformation is formulated and proved. Section 3 discusses the case of fam-
ilies of real matrices. Section 4 uses results of the previous sections to find tangent
cones to the stability domain at singular boundary points. The conclusion gives a
brief overview of the results obtained and discusses possibilities for their application
to different problems.

2. Transformation of families of complex matrices to normal forms. For
the following presentation we need definitions given by Arnold [1, 2], [3, p. 237].

Definition 2.1. A family of complex matrices is a holomorphic mapping A :

P −→ Cn2

, where P is the vicinity of some point p0 in the parameter space Cm and
Cn2

is the space of n× n complex matrices.
Let us consider an arbitrary family of matrices A(p), p = (p1, . . . , pm)T ∈ Cm.

Denote by λi the eigenvalues of the matrix A0 = A(p0) and let n1(λi) ≥ n2(λi) ≥ · · ·
be the dimensions of the Jordan blocks belonging to λi, beginning with the largest
one. Let the Jordan form J of the matrix A0 be given by

A0 = C0JC
−1
0 ,(2.1)

where

J =

 J1

J2

. . .

 ,

Ji =

 J1
i

J2
i

. . .

 ,

and the Jordan block

Jki =


λi 1

· ·
· ·
· 1

λi


has dimension nk(λi).

Denote by Xkl
ij the block of a square n × n matrix X, which is situated on the

intersection of the rows corresponding to the block Jki and columns corresponding
to the block J lj ; see, for example, Figure 2.1. Denote elements of each block Xkl

ij by

xklij (r, s), r = 1, . . . , nk(λi), s = 1, . . . , nl(λj), where r, s are the numbers of a row

and a column in Xkl
ij corresponding to xklij (r, s). In the case i = j we will leave only

one number in the subscript, e.g., Xkl
i , x

kl
i (r, s). The block of the matrix X which

corresponds to the block Ji of the Jordan form J will be denoted by Xi.
Definition 2.2. A versal deformation of a matrix A0 is a family of matrices

A′(p′), p′ ∈ Cd such that any family A(p), A(p0) = A0 in the vicinity of the point
p = p0 can be represented in the form

A(p) = C(p)A′(ϕ(p))C−1(p),(2.2)
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(a) (b)

Fig. 2.1. Block decomposition of a square matrix X according to the Jordan form J.

(a) (b) (c)

Fig. 2.2. Location of parameters in blocks of a miniversal deformation.

where p′ = ϕ(p), ϕ(p0) = 0 is a holomorphic mapping from the vicinity of the point
p = p0 in the parameter space Cm into the vicinity of the origin of coordinate in the
space Cd; C(p) is a family of nonsingular matrices describing a change of basis. A
versal deformation is said to be miniversal if the dimension d of the parameter space
is the smallest possible for a versal deformation [1, 2], [3, p. 237].

It is shown in [1, 2], [3, p. 238], that a miniversal deformation is determined by the
Jordan form of the matrix A0 and can be chosen in the form of a sum J+B(p′), where
B(p′) = Diag (B1, B2, . . .) is a family of block-diagonal matrices with blocks Bi(p

′)
corresponding to the blocks Ji of the matrix J . There are different ways of choosing
the blocks Bi(p

′). Three possible types are shown in Figure 2.2, where the block
Bi(p

′) has all zeros except at the places indicated. In cases (a) and (b), the indicated
places are filled by different components of the vector p′ (parameters of the miniversal
deformation); in case (c) each slanted segment is filled by a corresponding component
of the vector p′. Other types of blocks are also possible, e.g., blocks whose elements
are all zero, except for one element on each slanted segment in Figure 2.2(c) which
is an independent parameter. In all cases, each block Bkl

i contains exactly nl(λi), if
k ≤ l, and nk(λi), if k > l, different components of p′ (one on each slanted segment
in Figure 2.2(c)). Denote these components by bkli (t), t = 1, . . . ,min(nk(λi), nl(λi))
numbered inside each block from the top and from the right (see examples for the
case of two Jordan blocks of the size 3 and 2 in Figure 2.3). Components bkli (t)
compose the vector of parameters of the miniversal deformation p′ of the dimension
d =

∑
i(n1(λi) + 3n2(λi) + · · ·) [1, 2], [3, p. 237].

Definition 2.3. Define a generalized trace of a k× l matrix F denoted by tr(t)F
as a sum of elements on that diagonal of F which is (min(k, l) − t) positions above
the left lower element
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(a) (b) (c)

Fig. 2.3. Numbering of parameters of a miniversal deformation.

tr(t)F =

min(k,l)∑
r=t

f(k −min(k, l) + r, r − t+ 1).(2.3)

In the case of a square matrix (k = l), Definition 2.3 coincides with the definition
of a generalized trace given in [4]. In particular, a generalized trace tr(min(k,l))F is
equal to the left lower element of the matrix F, and a generalized trace tr(1)F of a
square matrix F coincides with the ordinary trace trF, which is equal to the sum of
elements on the main diagonal. In the case of an n× n matrix F a generalized trace
tr(t) of a block F kl

i is equal to the sum of elements on that slanted segment which is
(t− 1) positions below the longest one in this block; see Figure 2.2,

tr(t)F kl
i =

n′∑
r=t

fkli (nk(λi)− n′ + r, r − t+ 1), n′ = min(nk(λi), nl(λi)).

For blocks of the matrix B(p′) we have tr(t)Bkl
i = αkli (t)bkli (t), where αkli (t) = 1, if Bi

is a block of the type (a) or (b), and αkli (t) = n′ − t + 1, if Bi is a block of the type
(c); see Figure 2.2.

Denote by Dh the derivative

Dh =
∂|h|

∂ph
1

1 · · · ∂phmm
taken at the point p = p0, where h = (h1, . . . , hm), hi ≥ 0, is a vector whose compo-
nents hi denote the order of the partial derivative with respect to pi (hi = 0 means
that the derivative with respect to pi is not taken), |h| = h1 + · · · + hm is the order
of the derivative.

Transformation of the family of matrices A(p) to the normal form (miniversal
deformation) (2.2) includes finding the family A′(p′) corresponding to the Jordan
form J of the matrix A0, families C(p), C−1(p), and holomorphic mapping p′ =
ϕ(p) (functions bkli (t)(p)). To obtain C(p), C−1(p), and bkli (t)(p), it is sufficient to
determine derivatives DhC, DhC−1, and Dhbkli (t) for all h. Then the desired functions
are found locally as Taylor series (by virtue of holomorphy).

Theorem 2.4. Let A(p) be a family of matrices. Then the following expressions
are valid for derivatives Dh, |h| > 0 of the functions C(p), C−1(p), bkli (t)(p) trans-
forming the family of matrices A(p) to the miniversal deformation A′(p′) described
above (2.2).
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1◦.

Dhbkli (t) =
tr(t)F kl

i

αkli (t)
,(2.4)

F = C−1
0

(
DhA−

∑
h1+h2+h3=h
h1,h2,h3 6=h

Ch1h2h3

h Dh1C Dh2A′Dh3C−1

(2.5)

+ A0

∑
h1+h2=h
h1,h2 6=h

Ch1h2

h Dh1C Dh2C−1

)
C0,

Ch1h2h3

h =

m∏
i=1

hi!

hi1!h
i
2!h

i
3!
, Ch1h2

h =

m∏
i=1

hi!

hi1!h
i
2!
.

2◦.

DhC = C0X,(2.6)

xklij (r, s) =

nk(λi)∑
r1=r

s∑
s1=1

(−1)r1−r

(λi − λj)r1−r+s−s1+1
Cr1−r
r1−r+s−s1g

kl
ij (r1, s1), i 6= j,(2.7)

Ck
n =

n!

k!(n− k)!
,

xkli (r, s) =



0, k ≤ l, r = 1,
s∑

s1=s′(r,s)

gkli (r − s+ s1 − 1, s1), k ≤ l, r 6= 1,

−
r′(r,s)∑
r1=r

gkli (r1, s− r + r1 + 1), k > l, s 6= nl(λi),

0, k > l, s = nl(λi),

(2.8)

s′(r, s) = max(1, s− r + 2), r′(r, s) = min(nk(λi), r − s+ nl(λi)− 1),

G = DhA′ − F.(2.9)

3◦.

DhC−1 = −C−1
0

∑
h1+h2=h
h2 6=h

Ch1h2

h Dh1C Dh2C−1.(2.10)

The zero order derivatives Dh, h = 0 of functions C, C−1, A′ (values of functions
at p = p0) are D0C = C0, D

0C−1 = C−1
0 , D0A′ = J . Theorem 2.4 allows finding
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derivatives Dh of the order |h| > 0 of functions C, C−1, and bkli (t), using only deriva-
tives of these functions of a lower order and the derivative DhA. Thus, (2.4)–(2.10)
represent a recurrent procedure for determining the derivatives DhC, DhC−1, and
Dhbkli (t) for any h using derivatives Dh1A of the order |h1| < |h| and h1 = h.

If all derivatives DhC, DhC−1, and Dhbkli (t) of the order |h| ≤ s are determined,
the desired functions can be found approximately as Taylor series containing terms
with derivatives Dh of the order |h| ≤ s

C(p) =
∑

0≤|h|≤s
DhC

m∏
r=1

(pr − p0r)
hr

hr!
+ o(‖p− p0‖s),

C−1(p) =
∑

0≤|h|≤s
DhC−1

m∏
r=1

(pr − p0r)
hr

hr!
+ o(‖p− p0‖s),

bkli (t)(p) =
∑

0≤|h|≤s
Dhbkli (t)

m∏
r=1

(pr − p0r)
hr

hr!
+ o(‖p− p0‖s).

Here ‖p‖ is the norm in Cm. Denoting these approximations by C̃(p), C̃−1(p), and ϕ̃(p)

we can represent the family of matrices A(p) in the formA(p) = C̃(p)A′(ϕ̃(p))C̃−1(p)+
o(‖p− p0‖s); that is, the recurrent procedure allows transforming an arbitrary given
family of matrices A(p) to the normal form in the vicinity of the point p = p0 with
the accuracy up to small terms of an arbitrary order.

Note that Burke and Overton [4] obtained the formulae for calculation specific
sums of the first order derivatives of functions bkli (t)(p) in the case of one parameter
p ∈ R. These formulae can be derived from expressions (2.4) and (2.5).

2.1. Example. As an example let us consider a one-parameter family of 3× 3
matrices A(z) which has at the point z = 0 eigenvalues λ1 = 0, λ2 = 2i with corre-
sponding Jordan blocks of the order n1(λ1) = 2, n1(λ2) = 1, respectively,

A(z) =

 2i+ z −8z z2

2iz 4iz 1− iz2

2z2 −2z z2

 .

The Jordan form of the matrix A0 = A(0) and matrices C0, C
−1
0 have the form

J =

 0 1 0
0 0 0
0 0 2i

 , C0 =

 0 0 1
1 0 0
0 1 0

 , C−1
0 =

 0 1 0
0 0 1
1 0 0

 .

For the first iteration (h = 1, Dh = d/dz) we have

F =

 f11
1 (1, 1) f11

1 (1, 2) f11
12 (1, 1)

f11
1 (2, 1) f11

1 (2, 2) f11
12 (2, 1)

f11
21 (1, 1) f11

21 (1, 2) f11
2 (1, 1)

 =

 4i 0 2i
−2 0 0
−8 0 1

 ,

G =

−4i 0 −2i
0 4i 0
8 0 0

 , X =

 0 0 1
−4i 0 0
−4i −2 0

 .
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Fig. 2.4. Block of a matrix commuting with the Jordan form J.

These matrices are used in (2.4), (2.6), and (2.10) to determine the first derivatives
of the desired functions. Then these derivatives are used in the second iteration to
find the derivatives Dh = d2/dz2. As a result, the normal form A′(p′) of the family
A(z) and, determined by Theorem 2.4, the functions p′ = ϕ(z), C(z), C−1(z) have
the form

A′(p′) =

 0 1 0
b1(2) b1(1) 0

0 0 2i+ b2(1)

 , p′ = (b1(1), b1(2), b2(1))T ,

b1(1) = 4iz + 9z2 + o(z2), b1(2) = −2z + o(z2), b2(1) = z − 8z2 + o(z2),

C(z) =

 −4iz + (2− 2i)z2 −2z − (5 + 1.5i)z2 1
1 0 z + (2 + 0.5i)z2

−4iz − 8z2 1 + 5iz2 0

+ o(z2),

C−1(z) =

 −z − (2 + 0.5i)z2 1− 4iz2 −2z2

−4iz2 4iz + 8z2 1− 5iz2

1− 4iz2 4iz − (2− 10i)z2 2z + (5 + 1.5i)z2

+ o(z2).

2.2. Proof of the theorem.
Definition 2.5. The centralizer of a square matrix X is the set of all matrices

commuting with X. The notation is as follows:

ZX = {Y : [X,Y ] = 0},
where [X,Y ] = XY − Y X [1, 2, 3].

A centralizer ZJ of the Jordan form J consists of block-diagonal matrices Y =
Diag (Y1, Y2, . . .) whose blocks Yi correspond to the blocks Ji and have the form shown
in Figure 2.4 [1, 2, 3, 7]. In Figure 2.4 every slanted segment denotes a sequence of
equal numbers, while other elements are all zeros. The centralizer ZJ is a plane in the
space of all matrices Cn2

which passes through the zero and identity matrix.
Lemma 2.6. For any n× n matrix X and any i, k, l, t the following equality is

valid:

tr(t)
(
[J,X]kli

)
= 0.
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Proof. For any matrix Y ∈ ZJ we have

tr ([J,X]Y ) = tr (JXY −XJY ) =

tr (Y JX − JY X) = −tr ([J, Y ]X) = 0.
(2.11)

Consider the matrix Y which has units on the tth slanted segment (beginning from
the largest one) in the block Y lk

i (see Figure 2.4), while the other components are all
zeros. Then, using (2.11), we obtain 0 = tr ([J,X]Y ) = tr(t)

(
[J,X]kli

)
.

Lemma 2.7. For any n × n matrix G, which satisfies the condition tr(t)Gkl
i = 0

for all i, k, l, t, the equation

[J,X] = G(2.12)

has the unique solution (2.7), (2.8), satisfying

xkli (1, s) = 0, k ≤ l,

xkli (s, nl(λi)) = 0, k > l,
(2.13)

for all i, k, l, s.
Proof. In the case when G is the zero matrix a set of solutions of (2.12) is the

centralizer ZJ . To satisfy conditions (2.13) the matrix X ∈ ZJ must have zeros on the
sth slanted segment (beginning from the smallest one for k ≤ l and from the largest
one for k > l) of the block Xkl

i ; see Figure 2.4. Hence, the equation [J,X] = 0 has the
unique solution X = 0 satisfying all conditions (2.13). Due to the linearity of equation
(2.12) and conditions (2.13), if two matrices X1 and X2 are solutions of (2.12) and
(2.13) for nonzero matrix G, then the matrix X = X1 − X2 satisfies the equations
[J,X] = 0 and (2.13). Consequently, X = X1 −X2 = 0; that is, if a solution of (2.12)
and (2.13) exists, it is unique.

By substituting the explicit form of J into (2.12) we obtain equations on the
elements of the matrix X

(λi − λj)x
kl
ij (r, s) + xklij (r + 1, s)− xklij (r, s− 1) = gklij (r, s),(2.14)

where, instead of all elements xklij with coordinates (r+ 1, s) or (r, s− 1), which don’t

belong to the block Xkl
ij , we take zeros. The fact that (2.7) and (2.8) is a solution to

equations (2.12) and (2.13) can be verified by substitution of expressions (2.7) and
(2.8) into (2.13) and (2.14). After substitution, equations (2.14) for i = j, r = nk(λi),
s = nl(λi)− t+ 1, k ≤ l and for i = j, r = t, s = 1, k > l take the form tr(t)Gkl

i = 0.
They are satisfied by virtue of the conditions of the lemma. Other equations are
satisfied identically.

Proof of Theorem 2.4. The proof is divided into three parts according to the items
of the theorem. Each part is denoted by a corresponding item number.

Item 3◦. Let us take the derivative Dh, |h| > 0 from both sides of the equality
C(p)C−1(p) = I, where I is the identity matrix:

∑
h1+h2=h

Ch1h2

h Dh1C Dh2C−1 = 0, Ch1h2

h =
m∏
i=1

hi!

hi1!h
i
2!
.

After expressing C0D
hC−1 in terms of the other summands and multiplying both

sides of the equation from the left by C−1
0 , we will prove item 3◦ of the theorem.
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Item 1◦. Let us take the derivative Dh from both sides of expression (2.2)

DhA =
∑

h1+h2+h3=h

Ch1h2h3

h Dh1C Dh2A′Dh3C−1, Ch1h2h3

h =
m∏
i=1

hi!

hi1!h
i
2!h

i
3!
.

Expressing C0D
hA′C−1

0 in terms of other summands and then multiplying both sides
of the equation by C−1

0 and C0 from left and from right, respectively, we obtain

DhA′ = C−1
0 DhAC0 − C−1

0

∑
h1+h2+h3=h

h2 6=h

Ch1h2h3

h Dh1C Dh2A′Dh3C−1 C0.

Using equation (2.10), proved above for the term containing DhC−1, we get

DhA′ = [J,C−1
0 DhC] + F,(2.15)

where the matrix F is defined in (2.5). Using Lemma 2.6 and taking into account that
tr(t)(DhA′kl

i ) = tr(t)(DhBkl
i ) = αkli (t)Dhbkli (t) for |h| > 0, we will prove item 1◦ of the

theorem.
Item 2◦. Rearranging (2.15), we obtain

[J,C−1
0 DhC] = G,(2.16)

where a matrix G is defined in (2.9).
Note that C−1

0 DhC = Dh(C−1
0 C) is a derivative of the family of matrices CJ =

C−1
0 C, CJ(p0) = I, which describe a change of basis transforming the family AJ(p) =

C−1
0 A(p)C0 to the normal form, that is,

AJ(p) = C−1
0 A(p)C0 = C−1

0 C(p)A′(ϕ(p))C−1(p)C0 = CJ(p)A′(ϕ(p))C−1
J (p).

At the point p = p0 the matrix AJ(p0) = C−1
0 A0C0 = J is in the Jordan form. In the

proof of the versality theorem [1, 2], [3, pp. 238–241] it was shown that in this case
the family CJ can be chosen lying on an arbitrary smooth surface of the dimension
n2 − d in the space of all matrices which passes through the identity matrix and
transversal at this point to the centralizer ZJ . For each such a surface the family CJ

can be chosen in the unique way. In particular, the plane I + Π, where Π is the set
of all matrices X satisfying conditions (2.13), has all these properties. The planes ZJ
and I +Π are transversal, because the only matrix from ZJ which satisfies conditions
(2.13) (intersection of the planes) is the identity matrix and the sum of dimensions
of the planes is equal to the dimension of the space n2. If we choose the plane I + Π
for determining CJ , we obtain that all derivatives DhCJ = C−1

0 DhC = X must
satisfy conditions (2.13), which can be regarded as normality conditions. Then the
formulae of item 2◦ follow from Lemma 2.7 applied to (2.16) (conditions tr(t)Gkl

i =
tr(t)(DhA′kl

i )−tr(t)F kl
i = αkli (t)Dhbkli (t)−tr(t)F kl

i = 0 are fulfilled by virtue of equality
(2.4)).

Note that instead of normality conditions (2.13) one can take the same amount
of any other linearly independent homogeneous equations such that the only matrix
from ZJ which satisfies them is the zero matrix. Theorem 2.4 and Lemma 2.7 will
remain valid if (2.8) is changed in accordance with the new normality conditions by
solving (2.14) for i = j, which determines elements of the blocks Xkl

i .
The case of families of complex matrices A(p) depending on a vector of real

parameters p ∈ Rm is the same as considered above except that the holomorphic
dependence on parameters is changed to the smooth one. In this case, Theorem 2.4 is
valid and allows finding derivatives Dh of functions C, C−1, bkli (t) of the order |h| ≤ s,
where s is the degree of smoothness of the family A(p).
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3. Transformation of families of real matrices to normal forms. Let us
consider a family of real matrices A : P −→ Rn2

, P ⊂ Rm smoothly depending on a
vector of real parameters p ∈ Rm and determined in the vicinity of a point p = p0. Let
the matrix A0 = A(p0) have real eigenvalues λi, i = 1, . . . , q and complex eigenvalues
λi, λi, i = q + 1, q + 2, . . . (overline denotes the complex conjugate operation). Then
the Jordan form of the matrix A0 is given by J = Diag (J1, . . . , Jq, Jq+1, Jq+1, Jq+2,
Jq+2, . . .), where the blocks Ji correspond to the eigenvalues λi and have the form
Ji = Diag (J1

i , J
2
i , . . .); J

k
i are the Jordan blocks of dimensions nk(λi) beginning with

the largest one.

Denote by Xkl
ijA, X

kl
ijB , X

kl
ijC , X

kl
ijD blocks of an arbitrary matrix X of the dimen-

sion n × n which are situated on the intersection of rows and columns belonging to

the blocks Jki and J lj , J
k
i and J lj , J

k
i and J lj , J

k
i and J lj , respectively. Denote elements

of these blocks by xklijA(r, s), xklijB(r, s), xklijC(r, s), and xklijD(r, s). In the case i = j we

will leave only one number in the subscript, e.g., Xkl
iA, x

kl
iA(r, s).

Denote by RlY a decomplexification of a complex matrix Y [3, pp. 244–245]

RlY =

(
ReY −ImY
ImY ReY

)
.

Define a matrix JR = Diag (J1, . . . , Jq,Rl Jq+1,Rl Jq+2, . . .). The matrices JR and J
are connected by the relation JR = RJR−1, whereR = Diag (I1, . . . , Iq, I

′
q+1, I

′
q+2, . . .),

R−1 = R = Diag (I1, . . . , Iq, I ′q+1, I
′
q+2, . . .). The blocks I ′j have the form

I ′j =
1 + i

2

(
Ij −i Ij
−i Ij Ij

)
, i =

√−1,

where Ij is the identity matrix of the same dimension as Jj . Let us choose the matrix
C0 transforming A0 to the Jordan form J (2.1) such that the matrices CR0 = C0R

−1

and C−1
R0 = RC−1

0 are real. For this purpose it is sufficient to choose the matrix
C0 so that its columns, passing through the blocks corresponding to real eigenvalues
Jj , j = 1, . . . , q, are real, and columns, passing through the blocks corresponding to
complex conjugate eigenvalues Jj and Jj , j = q+1, q+2, . . . , are complex conjugate.
This is possible due to the reality of A0. Then each column of the matrix CR0 will be
equal to the sum of the real and imaginary parts of the corresponding column of the
matrix C0. Using CR0 the matrix A0 can be transformed to the form JR

A0 = C0JC
−1
0 = CR0JRC

−1
R0 .

It is shown in [8], [3, pp. 244–245] that the real miniversal deformation A′
R(p′),

p′ ∈ Rd, to which an arbitrary family of real matrices A(p), A(p0) = A0 can be
transformed by a smooth change of basis CR(p) and a smooth change of param-
eters p′ = ϕ(p), ϕ(p0) = 0, can be chosen in the form A′

R(p′) = JR + BR(p′),
BR = Diag (B1, . . . , Bq, RlBq+1, RlBq+2, . . .). Here Bj is a block corresponding
to the block Jj whose elements are all zero, except at the places indicated in Fig-
ure 2.3 (a, b, or c). In the blocks Bj , j = 1, . . . , q, the indicated places are filled
by independent parameters bklj (t)a, and in the blocks Bj , j = q + 1, q + 2, . . . , by

complex numbers bklj (t) = bklj (t)a + ibklj (t)b, where bklj (t)a and bklj (t)b are independent

parameters. Numbering of parameters bklj (t)a, b
kl
j (t)b is carried out in the same way

as in section 2. Let us introduce families of matrices C = CRR, C
−1 = R−1C−1

R ,
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A′ = J + B, and B = Diag (B1, . . . , Bq, Bq+1, Bq+1, Bq+2, Bq+2, . . .). Using expres-
sions A′

R = JR +BR = R(J +B)R−1 = RA′R−1, we obtain

A(p) = CR(p)A′
R(ϕ(p))C−1

R (p) = C(p)A′(ϕ(p))C−1(p).(3.1)

The family A′(p′) has the same structure as the complex miniversal deformation
in section 2. This family as well as A′

R(p′) is a miniversal deformation to which any
family of real matrices A(p), A(p0) = A0 can be transformed in the vicinity of the
point p = p0, but it and the families C, C−1 contain complex elements. For derivatives
Dh of the functions p′ = ϕ(p), C(p), and C−1(p) transforming the family A(p) to the
form A′(p′) the formulae of Theorem 2.4 are valid if we assume bklj (t) = bklj (t)a for

j ≤ q and bklj (t) = bklj (t)a + ibklj (t)b for j > q. Using the relations CR = CR−1,

C−1
R = RC−1 and Theorem 2.4, analogous formulae can be found for the derivatives

DhCR, D
hC−1

R , Dhbklj (t)a, and Dhbklj (t)b.
Theorem 3.1. Let A(p), p ∈ Rn be a family of real matrices. Then the follow-

ing formulae are valid for derivatives Dh, |h| > 0 of the functions CR(p), C−1
R (p),

bklj (t)a(p), and bklj (t)b(p) transforming the family A(p) to the real miniversal defor-
mation A′

R(p′) described above (3.1)

1◦.

Dhbklj (t)a = Re
tr(t)

[
(R−1FRR)kljA

]
αklj (t)

, Dhbklj (t)b = Im
tr(t)

[
(R−1FRR)kljA

]
αklj (t)

,

FR = C−1
R0

(
DhA−

∑
h1+h2+h3=h
h1,h2,h3 6=h

Ch1h2h3

h Dh1CRD
h2A′

RD
h3C−1

R

+A0

∑
h1+h2=h
h1,h2 6=h

Ch1h2

h Dh1CRD
h2C−1

R

)
CR0.

2◦.

DhCR = CR0RXR−1,

G = R−1(DhA′
R − FR)R.

3◦.

DhC−1
R = −C−1

R0

∑
h1+h2=h
h2 6=h

Ch1h2

h Dh1CRD
h2C−1

R .

Here elements of the blocks Xkl
iA and Xkl

iD are expressed in terms of elements of the
blocks Gkl

iA and Gkl
iD, respectively, by formulae (2.8), and elements of other blocks of

the matrix X are expressed in terms of elements of the corresponding blocks of the
matrix G by formulae (2.7). In the last case it is necessary to take into account that
the complex conjugate eigenvalues λi, λi are considered independently (for example,
to obtain the formulae for elements of the block Xkl

ijC , it is necessary to replace in

(2.7) (λi − λj) by (λi − λj) and gklij (r1, s1) by gklijC(r1, s1)).
Proof. The proof is based on the connection of the real and complex miniver-

sal deformations (3.1). First let us consider a structure of the complex miniversal
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deformation A′(p′) more thoroughly. As shown above, the matrix A′ has a block-
diagonal form with blocks A′

jA, j ≤ q and A′
jA, A

′
jD, j > q corresponding to the

real and complex eigenvalues λj ∈ R, j ≤ q and λj , λj ∈ C, j > q, respectively.
The blocks A′

jA depend on parameters bklj (t) = bklj (t)a for j ≤ q and on parameters

bklj (t) = bklj (t)a + ibklj (t)b for j > q. The blocks A′
jD = A′

jA, j > q depend on pa-

rameters bklj (t) = bklj (t)a − ibklj (t)b. Thus, we have a connection between the real and
complex miniversal deformations, as well as transformation functions in the form

A′ = R−1A′
RR, C = CRR, C−1 = R−1C−1

R ,(3.2)

bklj (t) =

{
bklj (t)a, j ≤ q,

bklj (t)a + ibklj (t)b, j > q.
(3.3)

The formulae of theorem 2.4 are valid for derivatives of functions bklj (t)(p), C(p),

and C−1(p). Combining these formulae with equalities (3.2) and (3.3), we can obtain
expressions for derivatives of bklj (t)a, b

kl
j (t)b, CR, and C−1

R .

Substituting relations (3.2) into formulae (2.5), (2.6), and (2.9), we obtain

F = R−1FRR,(3.4)

DhCR = CR0RXR−1,(3.5)

G = R−1(DhA′
R − FR)R.(3.6)

It follows from expressions (3.3) and Theorem 2.4 that the derivatives Dhbklj (t)a
and Dhbklj (t)b can be found by taking the real and imaginary parts of the right-hand
side of relation (2.4) and using expression (3.4) for the matrix F . This proves item 1◦

of the theorem.

Item 2◦ follows directly from relations (3.5), (3.6), and Theorem 2.4. The fact
that the matrix DhCR calculated by these formulae will be real can be proved in the
following way. Elements of the matrix G = R−1GRR, where GR = DhA′

R − FR is a

real matrix, have the properties gklijA(r, s) = gklijD(r, s), gklijB(r, s) = gklijC(r, s). It can
be shown that elements of the matrix X obtained from such a matrix G have the
same properties. It remains to note that then the matrix RXR−1 and, consequently,
the matrix DhCR = CR0RXR−1 will be real.

For the proof of remaining item 3◦ of the theorem it is sufficient to substitute the
relations C = CRR and C−1 = R−1C−1

R into expression (2.10).

For derivatives of the zero order h = 0 we have D0A′
R = JR, D

0CR = CR0,
and D0C−1

R = C−1
R0 . The recurrent procedure described in Theorem 3.1 allows finding

derivatives Dh of the real functions CR, C
−1
R , ϕ, transforming the family of matrices

A(p) to the real miniversal deformation A′
R(p′), for any h. Using these derivatives,

the real family A(p) can be transformed to the normal form with the accuracy up to
o(‖p− p0‖s), where s is the degree of smoothness of the family.

3.1. Example. Let us consider a one-parameter family of real matrices A(x) of
the order 4 × 4 having at the point x = 0 the pair of complex conjugate eigenvalues
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λ = 1 + i, λ = 1− i with corresponding Jordan blocks of the order n(λ) = 2:

A(x) =


1− 4x2 1 + x 2x2 1
−1 + 2x 1− x 1− 2x2 3x+ 2x2

2x2 2x2 1− 2x −1 + x
−x 3x 1 + 4x2 1 + x

 .

The normal forms A′(p′) and A′
R(p′) of this family and the function p′ = ϕ(x) deter-

mined using the recurrent procedure of Theorem 3.1 (up to o(x2)) have the form

A′
R(p′) =


1 1 −1 0

b(2)a 1 + b(1)a −b(2)b −1− b(1)b
1 0 1 1

b(2)b 1 + b(1)b b(2)a 1 + b(1)a

 ,

A′(p′) =


1 + i 1 0 0
b(2) 1 + i+ b(1) 0 0
0 0 1− i 1

0 0 b(2) 1− i+ b(1)

 ,

p′ = (b(1)a, b(1)b, b(2)a, b(2)b)
T ,

b(1) = b(1)a + ib(1)b = −x− 2x2 + i
(
−x− 21

8
x2
)

+ o(x2),

b(2) = b(2)a + ib(2)b = −x

2
+

25

8
x2 + i

(3

2
x− 7

4
x2
)

+ o(x2).

4. Application to stability theory. As an application of miniversal deforma-
tions to the stability theory, let us consider a problem of investigation of the stability
domain of a family of real n × n matrices A(p), p ∈ Rm in the vicinity of a singular
boundary point. The stability domain of a family of matrices A(p) is a set of val-
ues of the vector of parameters p at which all eigenvalues λ of the matrix A(p) have
negative real parts Reλ < 0. A boundary of the stability domain is characterized by
matrices A(p) having pure imaginary eigenvalues Reλ = 0, while for all other eigen-
values Reλ < 0. Nonsingular points of the stability boundary are characterized by
the existence of only one simple zero eigenvalue λ = 0 or one pair of simple complex
conjugate eigenvalues λ = ±iω on the imaginary axis. Otherwise the boundary point
is singular [2], [3, pp. 255–256]. A linear approximation of the stability domain at the
boundary point is described by a tangent cone introduced by Levantovskii [10].

Definition 4.1. A tangent cone to the stability domain at the boundary point is
a set of direction vectors e = dp/dε

∣∣
ε=0

of the curves p(ε), ε > 0, which start at this
point and lie in the stability domain.

A concept of the tangent cone can be illustrated by a simple example; see Fig-
ure 4.1. Here the tangent cone to the stability domain S = {p = (p1, p2)

T : 2p2 >
p1 + p2

1, 2p1 + p2
1 > p2} at the origin has the form of an angle K = {e = (e1, e2)

T :
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Fig. 4.1. A tangent cone to the stability domain.

2e2 ≥ e1, 2e1 ≥ e2}. Thus, the tangent cone consists of all vectors directed into the
stability domain or tangent to its boundary.

In [10], using the miniversal deformation tangent cones have been described for
some types of singular boundary points up to a linear diffeomorphism. In this section
using the miniversal deformations and Theorem 2.4 expressions for tangent cones in
the parameter space are found for all types of boundary points. It is shown that for
determining the tangent cone we need only the Jordan form of the matrix A and its
first derivatives with respect to parameters at the boundary point under consideration.

Let p = p0 be a boundary point of the stability domain and let λ0 = 0, λj =
iωj 6= 0, λj = −iωj , j = 1, . . . , k be pure imaginary eigenvalues of the matrix A(p0)
(i is the imaginary unit).

Theorem 4.2. Assume that each pure imaginary eigenvalue λ0, λj , λj , j =
1, . . . , k of the matrix A(p0) has exactly one corresponding Jordan block of the dimen-
sion nj , j = 0, . . . , k. If the system of vectors f(l1), gj(l2), hj(l3) ∈ Rm, l1 = 1, . . . , n0,
l2 = 1, . . . , nj , l3 = 2, . . . , nj , j = 1, . . . , k, is linearly independent, where

f(l1) =
(
tr(l1)[F (1)110 ], . . . , tr(l1)[F (m)110 ]

)T
,

gj(l2) =
(
Re tr(l2)[F (1)11j ], . . . ,Re tr(l2)[F (m)11j ]

)T
,(4.1)

hj(l3) =
(
Im tr(l3)[F (1)11j ], . . . , Im tr(l3)[F (m)11j ]

)T
,

F (r) = C−1
0

∂A

∂pr
C0,

and derivatives are taken at p = p0, then the tangent cone to the stability domain of
the family A(p) at the point p = p0 has the form

K = {e ∈ Rm :

(f(1), e) ≤ 0, (f(2), e) ≤ 0, (f(3), e) = · · · = (f(n0), e) = 0,

(gj(1), e) ≤ 0, (gj(2), e) ≤ 0, (gj(3), e) = · · · = (gj(nj), e) = 0,

(hj(2), e) = · · · = (hj(nj), e) = 0, j = 1, . . . , k }.

(4.2)

Here (x, y) = x1y1 + · · ·+ xmym is the scalar product in Rm. In the case when zero
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is not an eigenvalue of the matrix A(p0) the expressions containing the vectors f(l)
have to be excluded from (4.2).

For the proof of the theorem we need the following lemmas.
Lemma 4.3. The tangent cone to the stability domain of the family of polynomials

xn − a1x
n−1 − · · · − an at the point a1 = · · · = an = 0 in the parameter space

p = (a1, . . . , an)T ∈ Rn is equal to the set {a1 ≤ 0, a2 ≤ 0, a3 = · · · = an = 0}.
Lemma 4.4. The tangent cone to the stability domain of the family of polynomials

zn − (a1 + ib1)z
n−1 − · · · − (an + ibn) at the point a1 = b1 = · · · = an = bn = 0 in

the parameter space p = (a1, b1, . . . , an, bn)T ∈ R2n is equal to the set {a1 ≤ 0, b1 ∈
R, a2 ≤ 0, b2 = a3 = · · · = an = bn = 0}.

A polynomial is said to be stable if real parts of all its roots are negative. Lemmas
4.3 and 4.4 have been formulated and proved in [10].

Lemma 4.5. For any αj1 ≤ 0, αj2 ≤ 0, j = 0, . . . , k, there exists a curve

q1(ε), q1(0) = 0 in the space q1 = (aj1l1 , b
j2
l2
, l2 6= 1)T of all coefficients (except

b11, . . . , b
k
1) of the polynomials

xn0 − a0
1x

n0−1 − · · · − a0
n0
,

(4.3)
znj − (aj1 + ibj1)z

nj−1 − · · · − (ajnj + ibjnj ), j = 1, . . . , k,

such that all polynomials (4.3) are stable along the curve at ε > 0, the vector of
coefficients q2 = (b11, . . . , b

k
1)T is related with q1 and ε by an arbitrary given smooth

function q2 = Q2(q1, ε), Q2(0, 0) = 0, and the following conditions are fulfilled:

daj1
dε

= αj1,
daj2
dε

= αj2,
daj3
dε

= · · · = dajnj
dε

= 0, j = 0, . . . , k,

(4.4)
dbj2
dε

= · · · = dbjnj
dε

= 0, j = 1, . . . , k.

Proof. Let us consider polynomials of the form

(x+ ε2)n0−2
(
x2 + (−α0

1ε+ ε2)x− α0
2ε+ ε2

)
,

(4.5)
(z + ε2)nj−2

(
z2 + (−(αj1 + ibj1)ε+ ε2)z − αj2ε+ ε2

)
.

These polynomials are stable at ε > 0 and their coefficients, obtained after performing
multiplication, satisfy conditions (4.4). Expressing these coefficients through q2 =
(b11ε, . . . , b

k
1ε)

T , ε and then substituting the obtained expressions into the relation
q2 = Q2(q1, ε), we obtain q2 = Q′

2(q2, ε). Moreover, the matrix of the derivatives
∂Q′

2/∂q2 is the zero matrix at ε = 0. Hence, by the implicit function theorem the
vector q2 is a smooth function q2 = Q′′

2(ε) in the vicinity of ε = 0. If we substitute
the function q2 = (bj1)

T = Q′′
2(ε) into (4.5), the coefficients of polynomials (4.5) will

form the desired curve q1 = q1(ε).
Proof of Theorem 4.2. Using expression (2.2) the characteristic equation of the

matrix A(p) in the vicinity of the point p0 can be written in the form

det(A(p)− λE) = det(C(p)A′(ϕ(p))C−1(p)− λE) = det(A′(ϕ(p))− λE) = 0,

where A′(p′) is the miniversal deformation of the matrix A(p0). Hence, stability of the
matrix A(p) is equivalent to stability of the matrix A′(ϕ(p)) (normal form) and, by
virtue of the block-diagonal structure of A′, it is equivalent to simultaneous stability of
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all its blocks. The blocks corresponding to eigenvalues of the matrix A0 with negative
real parts are stable at the point p0 and, consequently, in the vicinity of this point.
Thus, stability in the vicinity of p0 is characterized by stability of the blocks A′

0, A
′
j ,

A′
j , j = 1, . . . , k, corresponding to pure imaginary eigenvalues or, since the blocks

A′
j and A′

j are stable or unstable simultaneously (because of complex conjugacy; see
section 3), by stability of the blocks A′

0, A
′
j , j = 1, . . . , k. Choosing the blocks A′

0, A
′
j

as the blocks of the type (a) (see Figure 2.2), and taking into account that there is
only one Jordan block corresponding to each eigenvalue, their characteristic equations
take the form

det(A′
0 − λE) = λn0 − b110 (1)aλ

n0−1 − · · · − b110 (n0)a = 0,

det(A′
j − λE) = ηnj − (b11j (1)a + i b11j (1)b)η

nj−1 − · · ·(4.6)

· · · − (b11j (nj)a + i b11j (nj)b) = 0,

η = λ− i ωj , j = 1, . . . , k,

where b110 (l1)a, b
11
j (l2)a, and b11j (l3)b are parameters of the miniversal deformation

smoothly depending on p. By Theorem 2.4, and using expressions (4.1), we get

∇b110 (l1)a = f(l1), ∇b11j (l2)a = gj(l2), ∇b11j (l3)b = hj(l3),(4.7)

∇ =

(
∂

∂p1
, . . . ,

∂

∂pm

)T
.

Let us consider an arbitrary smooth curve p = p(ε) with a direction e = dp/dε.
Coefficients of polynomials (4.6) along this curve have the form

b110 (l1)a(ε) = (f(l1), e)ε+O(ε2),

b11j (l2)a(ε) = (gj(l2), e)ε+O(ε2),(4.8)

b11j (l2)b(ε) = (hj(l2), e)ε+O(ε2).

Applying Lemmas 4.3 and 4.4 to polynomials (4.6) and taking into account expressions
(4.8), we obtain that conditions (4.2) are necessary for the curve p(ε) to lie in the
stability domain.

Let us prove that conditions (4.2) are also sufficient. Denote by q a vector whose
components are b110 (l1)a, b

11
j (l2)a, and b11j (l3)b, and by q1, q2 the parts of q so that

q2 = (b111 (1)b, . . . , b
11
k (1)b)

T and q1 consists of d′ = n0 +2n1 + · · ·+2nk− k remaining
components of the vector q. The vectors q, q1, and q2 are connected with p by smooth
functions q = Q(p), q1 = Q1(p), and q2 = Q2(p), which are parts of the mapping
p′ = ϕ(p). The Jacobian dQ1/dp is a d′ ×m matrix whose rows f(l1), gj(l2), hj(l3),
l3 6= 1 form, according to the conditions of the theorem, a linear independent system.
Let p1 be the vector consisting of d′ components of the vector p, which corresponds
to a linearly independent system of columns of this Jacobian, and denote by p2 the
vector consisting of the remaining components of p. Then det[dQ1/dp1] 6= 0 at the
point p = p0, and by the implicit function theorem p1 = P1(q1, p2) in the vicinity of
the point p = p0, q1 = 0. By substituting this relation into q2 = Q2(p1, p2), we get
q2 = Q′

2(q1, p2). Let us consider an arbitrary direction e satisfying conditions (4.2) and
assume that p2 = e2ε, where e1 and e2 are the parts of the vector e corresponding to
p1 and p2, respectively. Then q2 = Q′

2(q1, e2ε) = Q′′
2(q1, ε). By Lemma 4.5 there exists
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a curve q1 = q1(ε) such that dq1/dε = (dQ1/dp)e, q2 = Q′′
2(q1, ε) and all polynomials

(4.6) are stable at ε > 0 (conditions (4.4) of the lemma are fulfilled due to (4.2),
(4.8)). Then the curve p = p(ε), ε > 0 such that p1 = P1(q1(ε), e2ε), p2 = e2ε lies in
the stability domain of the family A(p) and has the direction e, which was chosen as
an arbitrary direction from the set (4.2).

Theorem 4.2 covers a case when all pure imaginary eigenvalues of A(p0) are non-
derogatory (have only one corresponding Jordan block). In the general case, when
some pure imaginary eigenvalues of A(p0) have several corresponding Jordan blocks,
the tangent cone to the stability domain is no longer a product of lines and half-lines
as in (4.2). Investigation of this case is much more complicated. However, using an
approach presented in the proof of Theorem 4.2, it is possible to find sets of directions
belonging to the tangent cone for a boundary point of an arbitrary type.

Theorem 4.6. Let λ0 = 0, λj , λj , j = 1, . . . , k be pure imaginary eigenvalues of
the matrix A(p0) and let each eigenvalue λj , j = 0, . . . , k have corresponding Jordan
blocks of the dimensions n1(λj) ≥ n2(λj) ≥ · · ·. Assume that the system of vectors
frs(l1), g

rs
j (l2), h

rs
j (l3) ∈ Rm for r ≥ s and l3 6= 1 at r = s is linearly independent,

where

frs(l1) =
(
tr(l1)[F (1)rs0 ], . . . , tr(l1)[F (m)rs0 ]

)T
,

grsj (l2) =
(
Re tr(l2)[F (1)rsj ], . . . ,Re tr(l2)[F (m)rsj ]

)T
,(4.9)

hrsj (l3) =
(
Im tr(l3)[F (1)rsj ], . . . , Im tr(l3)[F (m)rsj ]

)T
,

F (r) = C−1
0

∂A

∂pr
C0,

and the derivatives are taken at p = p0. Then the set

K1 ={e ∈ Rm :

(frr(1), e) ≤ 0, (frr(2), e) ≤ 0, (frr(3), e) = · · · = (frr(nr(λ0)), e) = 0,

(grrj (1), e) ≤ 0, (grrj (2), e) ≤ 0, (grrj (3), e) = · · · = (grrj (nr(λj)), e) = 0,(4.10)

(hrrj (2), e) = · · · = (hrrj (nr(λj)), e) = 0,

(frs(l1), e) = (grsj (l2), e) = (hrsj (l2), e) = 0, r > s, j = 1, . . . , k }

belongs to the tangent cone to the stability domain at the point p0. Analogously, if the
system of vectors (4.9) for r ≤ s and l3 6= 1 at r = s is linearly independent, then the
set

K2 ={e ∈ Rm :

(frr(1), e) ≤ 0, (frr(2), e) ≤ 0, (frr(3), e) = · · · = (frr(nr(λ0)), e) = 0,

(grrj (1), e) ≤ 0, (grrj (2), e) ≤ 0, (grrj (3), e) = · · · = (grrj (nr(λj)), e) = 0,(4.11)

(hrrj (2), e) = · · · = (hrrj (nr(λj)), e) = 0,

(frs(l1), e) = (grsj (l2), e) = hrsj (l2), e) = 0, r < s, j = 1, . . . , k, }

belongs to the tangent cone.
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Proof. Characteristic equations of the blocks A′
j in this case cannot be written

explicitly as in (4.6). However, if we consider curves p = p(ε) lying on the surface
determined by the equations

brs0 (l1)a(p) = brsj (l2)a(p) = brsj (l2)b(p) = 0, r > s, j = 1, . . . , k,(4.12)

the blocks A′
j will have block-triangular form, and their characteristic equations along

these curves will take the form

det(A′
0 − λE) =

∏
r

(
λnr(λ0) − brr0 (1)aλ

nr(λ0)−1 − · · · − brr0 (nr(λ0))a

)
= 0

det(A′
j − λE) =

∏
r

(
ηnr(λj) − (brrj (1)a + i brrj (1)b)η

nr(λj)−1 − · · ·(4.13)

· · · − (brrj (nr(λj))a + i brrj (nr(λj))b)
)

= 0, η = λ− i ωj , j = 1, . . . , k.

By Theorem 2.4 and using expressions (4.9), we obtain

∇brs0 (l1)a = frs(l1), ∇brsj (l2)a = grsj (l2), ∇brsj (l3)b = hrsj (l3).

Since the system of the vectors frs(l1), g
rs
j (l2), h

rs
j (l2), r > s is linearly independent,

by the implicit function theorem (4.12) can be solved with respect to a part of variables
p1 = P1(p2), where p1 and p2 are parts of the vector p. Then the coefficients of
polynomials (4.13) depend only on the vector of parameters p2, and the direction of
any curve p1 = P1(p2(ε)), p2 = p2(ε) satisfies all the conditions standing in the last row
of (4.10). For the proof of the theorem it is sufficient to find a curve p2 = p2(ε) having
an arbitrary chosen direction e2 such that the vector e consisting of e1 = (dP1/dp2)e2
and e2 satisfies all conditions (4.10), and all polynomials (4.13) are stable along this
curve (conditions in the last row of (4.10) are satisfied automatically due to the choice
of e1). This problem coincides with the problem solved in the proof of Theorem 4.2.

To prove that the set (4.11) belongs to the tangent cone, one should consider
curves lying in the surface

brs0 (l1)a(p) = brsj (l2)a(p) = brsj (l2)b(p) = 0, r < s, j = 1, . . . , k.

Then the proof is carried out analogously.
The relations determining sets (4.10) and (4.11) are sufficient conditions that a

direction belongs to the tangent cone. Note that Burke and Overton [4] obtained
necessary conditions for the stable perturbations of the matrix in the general case,
which can be used as necessary conditions that a direction belongs to the tangent
cone.

In the nonderogatory case, sets (4.10) and (4.11) coincide and are equal to the
tangent cone by Theorem 4.2. Theorems 4.2 and 4.6 give a constructive method for
determining the tangent cone to the stability domain at the boundary point. For this
purpose we need only information about the matrix A and its first derivatives with
respect to parameters at the point under consideration.

In the case of Theorem 4.2 for determining the tangent cone, we need to transform
the matrix A0 = A(p0) to the Jordan form (2.1) and find the derivatives ∂A/∂pr at
the point under consideration. Note that components of vectors (4.1) are sums of
products of some row of the matrix C−1

0 by the matrix ∂A/∂pr and by some column
of the matrix C0. Moreover, only the columns and rows of the matrices C0 and C−1

0 ,
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corresponding to the blocks of pure imaginary eigenvalues, are used. This fact can be
used to reduce the amount of calculations for determining the tangent cone.

It is well known that the columns of the matrix C0 corresponding to the block A′
j

(in the nonderogatory case) are the eigenvector and associated vectors u0
j , . . . , u

nj−1
j

(also called generalized eigenvectors) of the eigenvalue λj

A0u
0
j =λju

0
j ,

A0u
1
j =λju

1
j + u0

j ,

...(4.14)

A0u
nj−1
j =λju

nj−1
j + u

nj−2
i .

Then the rows of the matrix C−1
0 corresponding to the same block are determined as

the left eigenvector and associate vectors v
nj−1
j , . . . , v0

j , taken in reverse order,

v0
jA0 =λjv

0
j ,

v1
jA0 =λjv

1
j + v0

j ,

...(4.15)

v
nj−1
j A0 =λjv

nj−1
j + v

nj−2
i ,

and satisfying the normalization conditions

v0
ju

nj−1
j = 1, vlju

nj−1
j = 0, l = 1, . . . , nj − 1.(4.16)

Using these properties of the matrices C0 and C−1
0 expressions (4.1) can be written

in the form

f(l1) =

(n0−l1∑
t=0

vt0
∂A

∂p1
un0−l1−t

0 , . . . ,

n0−l1∑
t=0

vt0
∂A

∂pm
un0−l1−t

0

)T
,

gj(l2) =

(
Re

nj−l2∑
t=0

vtj
∂A

∂p1
u
nj−l2−t
j , . . . ,Re

nj−l2∑
t=0

vtj
∂A

∂pm
u
nj−l2−t
j

)T
,(4.17)

hj(l3) =

(
Im

nj−l3∑
t=0

vtj
∂A

∂p1
u
nj−l3−t
j , . . . , Im

nj−l3∑
t=0

vtj
∂A

∂pm
u
nj−l3−t
j

)T
.

According to (4.17), for determining the vectors f(l1), gj(l2), and hj(l3) we need
to know only right and left eigenvectors and associated vectors corresponding to pure
imaginary eigenvalues and satisfying normalization conditions (4.16), and the deriva-
tives ∂A/∂pr, r = 1, . . . ,m at the point p = p0.

Analogous expressions can be obtained for vectors (4.9). For this purpose in ex-
pressions (4.17) one should substitute frs(l1), g

rs
j (l2), h

rs
j (l3), u

t
js, v

t
jr, n

′
0, n

′
j instead

of f(l1), gj(l2), hj(l3), u
t
j , v

t
j , n0, nj , respectively, where n′0 = min(nr(λ0), ns(λ0)),

n′j = min(nr(λj), ns(λj)), and utjr v
t
jr, t = 0, . . . , nr(λj) − 1 are right and left eigen-

vectors and associated vectors corresponding to the Jordan block Jrj of the eigenvalue

λj . In this case the normalization conditions for the vectors ut1jr, v
t2
jr take the form

(4.16), while the normalization conditions for the vectors ut1jr, v
t2
js, r 6= s are

v
nr(λj)−1
jr u

ns(λj)−t
js = 0, t = 1, . . . , n′j , j = 0, . . . , k.
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Note that Theorems 4.2 and 4.6 are valid in the case of families of complex ma-
trices smoothly depending on a vector of real parameters, if the vectors gj(l1), hj(l2),
and grsj (l1), h

rs
j (l2) are determined separately for each pure imaginary eigenvalue of

the matrix A0 (also for the zero eigenvalue and for each of the complex conjugate
eigenvalues, if any) and the expressions containing the vectors f(l) and frs(l) are
excluded from (4.2), (4.10), and (4.11).

If we consider generic families of matrices [1, 2, 3] the condition of linearly inde-
pendence of the system of vectors in Theorem 4.2 is satisfied. It follows from the fact
that, in the generic case, the codimension of a surface in the parameter space Rm

(stratum), on which all the matrices A(p) have the same type of Jordan structure of
pure imaginary eigenvalues of the matrix A0, is equal to d′ = n0 +2n1 + · · ·+2nk− k
(the number of parameters of the miniversal deformation, which correspond to the
blocks of pure imaginary eigenvalues minus the number of nonzero pure imaginary
eigenvalues, whose magnitudes are arbitrary on the stratum). There is a field of vec-
tors (4.1) determined on this surface (d′ vectors at each point). The condition that
the system of these vectors is linearly dependent leads to m equations at each point
of the surface, where components of one vector are expressed as a linear combination
of corresponding components of the other vectors with (d′ − 1) arbitrary coefficients.
These equations are equivalent to (m− d′ + 1) equations which do not contain these
coefficients. But, since the dimension of the stratum is equal to m − d′ (less than
the number of equations), in the generic case these equations have no solution on the
stratum. This means that the system of vectors is linearly independent. The analo-
gous statement is correct in the case of Theorem 4.6. Thus, Theorems 4.2 and 4.6 can
be applied to all points of a boundary of the stability domain of a generic family of
matrices.

5. Conclusion. In this paper the problem of transformation of families of ma-
trices to the Arnold’s and Galin’s normal forms (miniversal deformations) is solved.
A constructive method determining a change of basis and a change of parameters,
transforming a family of real or complex matrices to the normal form in the vicinity
of the initial value of the parameter vector, is suggested. Finding the miniversal de-
formation of a family of matrices and describing the transformation to it represent a
complete procedure of transformation to the normal form (2.2). The first step in this
procedure is transformation of the matrix A0 = A(p0) to the Jordan form (2.1) and
finding the miniversal deformation A′(p′) according to [1, 2, 3]. Then, using Theorems
2.4 or 3.1, the derivatives of the families C(p), C−1(p) and of the mapping p′ = ϕ(p),
with respect to the parameters at the point p = p0, are determined. At this step a
recurrent procedure is used. Note that the procedure consists of only explicit relations
containing elementary arithmetic operations. Using the obtained derivatives, the de-
sired functions p′ = ϕ(p) and C(p), C−1(p) (describing a change of parameters and a
change of basis) are found as Taylor series. Thus, the procedure of transformation of
a matrix family to the normal form is complete.

The spectrum of the normal form A′(ϕ(p)) coincides with the spectrum of the
family A(p), but A′(p′) is a family of sparse matrices depending on parameters in
a quite simple way. This makes it efficient to apply normal forms (if the mapping
p′ = ϕ(p) is known) to investigation of different properties of the spectrum of the
family A(p). In section 4 the stability domain of a family of matrices in the vicinity of
the singular boundary point p = p0 is studied. In the cases when all pure imaginary
eigenvalues of the matrix A(p0) are nonderogatory, tangent cones to the stability
domain at the point p = p0 are found. In the case of an arbitrary Jordan structure
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of A(p0), sufficient conditions, which describe directions belong to the tangent cone,
are found. These conditions describe subsets of the tangent cones. It turns out that
tangent cones are determined by the right and left eigenvectors and associated vectors
corresponding to pure imaginary eigenvalues and the first derivatives of the matrix
A(p) with respect to parameters at the point p = p0. Expressions determining the
tangent cone are explicit and simple. They can be used in different stability problems
studying dependence on parameters.

Moreover, by means of using transformation to the normal form, it is possible
to investigate local properties of the spectral radius, to solve the problems of finding
eigenvalues of perturbed matrices, etc. In this connection it is convenient to investi-
gate the collapse of nonderogatory multiple eigenvalues. In this case the perturbed
eigenvalues are determined as roots of a polynomial whose coefficients are obtained
from Theorem 2.4.
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[6] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory
of matrices and matrix pencils. I. Versal deformations, SIAM J. Matrix Anal. Appl., 18
(1997), pp. 653–692.

[7] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Math.
Comp., 64 (1995), pp. 763–776.

[8] D. M. Galin, On real matrices depending on parameters, Uspekhi Mat. Nauk, 27 (1972),
pp. 241–242 (in Russian).

[9] F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2, Chelsea, New York, 1960.
[10] L. V. Levantovskii, The boundary of a set of stable matrices, Russian Math. Surveys, 35

(1980), pp. 249–250.
[11] A. A. Mailybaev and A. P. Seyranian, On singularities of a boundary of the stability domain,

SIAM J. Matrix Anal. Appl., 21 (2000), pp. 106–128.
[12] D. S. Schmidt, Transformations to versal normal form, in Computer Aided Proofs in Analysis,

K. R. Meyer and D. S. Schmidt, eds., IMA Vol. Math. Appl. 28, Springer, New York, 1989,
pp. 235–240.

[13] D. Schmidt, Versal normal form of the Hamiltonian function of the restricted problem of three
bodies near L∗

4, J. Comput. Appl. Math., 52 (1994), pp. 155–176.
[14] L. Stolovitch, On the computation of a versal family of matrices, Numer. Algorithms, 4

(1993), pp. 25–56.


